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Abstract. This study is devoted to the identification of human inner speech using an 

electroencephalogram (EEG), where inner speech refers to an individual's subjective experience 

of language, disconnected from discernible audible articulation. The core aim of this system is 

the rapid and precise classification of signals via human inner speech, thus facilitating enhanced 

control and interaction functionalities. The research entails a comprehensive analysis of 10 

volunteers' brain activity across 128 channels from OpenNeuro's Inner speech dataset. A hybrid 

neural network, which incorporates the small-world network structure, is employed to model 

neural activity within the brain. This approach outperforms random chance and aligns with 

current research expectations. 
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1.  Introduction 

A Brain-Computer Interface (BCI) is an integrated system of hardware and software, facilitating the 

control of computers or external devices through brain activity. This offers communication capabilities 

to individuals suffering from severe paralysis or locked-in syndrome [1]. Inner speech recognition 

pertains to the interpretation of one's internal language, enabling people to mentally visualize words 

without vocalizing them. These silent articulations can be captured and interpreted by computers, 

making it easier for individuals with disabilities to communicate their needs and give commands. In the 

long view, BCIs can forge a more seamless and efficient connection between humans and their 

surrounding objects. 

Certain studies have achieved the classification of human brain signals using an LSTM-RNN 

algorithm based on wavelet scattering and deep learning, employing basic EEG headsets for signal 

collection and capture. The acquired commands control brain-driven wheelchairs [2], utilizing specific 

neural behavior for movement control without directly capturing or isolating human speech. 

In terms of direct human inner speech classification, researchers have employed two-dimensional 

convolutional neural networks based on the EEGNet architecture to categorize brain signals while 

contemplating different words [3]. Further investigation has yielded promising results using Long Short-

Term Memory (LSTM) and Bidirectional Long Short-Term Memory (BiLSTM) in inner speech 

classification. 

Within the domain of inner speech classification, the utilization of Spiking Neural Networks (SNN) 

is relatively rare, possibly due to its inability to employ backpropagation effectively for supervised 

learning. SNNs have demonstrated commendable nonlinear processing capabilities in speech 
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recognition, particularly under complex conditions, reinforcing the biological plausibility of SNN-based 

neural networks [4]. In alignment with SNN's conformity to brain physiological principles, this 

experiment employs a hybrid algorithm combining SNN and small-world network, constructing a mixed 

neural network. By using Convolution Neural Network(CNN) to process the spike sequences obtained 

from SNN, it explores the untapped potential of SNN in simulating brain-like neural activities for 

classification in this field. 

2.  Dataset 

The inner speech dataset, constructed using electroencephalogram (EEG) technology, serves as a basis 

for brain-computer interfaces aimed at recognizing inner speech. Neural activity, as captured by EEG, 

offers a non-invasive approach with remarkable temporal resolution. To ensure the integrity of the 

experiment, ten healthy participants, all native Spanish speakers without any neurological impairments, 

were engaged in the creation of this dataset. 

With a configuration that recorded 128 channels and 1154 samples of signals, the data underwent 

preprocessing using the MNE library within Python. As illustrated in Figure 1, Participants were tasked 

to respond to visual cues displayed on the computer screen, with each epoch spanned 4.5 seconds. A 

triangle pointing in various directions (up, down, left, right) would be displayed in the initial 0.5 seconds, 

followed by its disappearance after the first second. Participants would then mentally imagine speaking, 

cease brain activity at 3.5 seconds, and begin to relax [5]. 

The dataset's nature suggests that the data's accuracy and applicability are contingent on the subject's 

attention level, contributing to the experimental complexity. This method bears similarity to meditation, 

where participants must suppress complex brain activities, concentrating solely on visual clues to 

ascertain corresponding vocal neural signals. Research, including observations of quantitative EEG 

signal changes through brief meditation exercises among ASD patients [6], reveals that meditation 

causes consistent alterations in EEG signals, undoubtedly compounding the challenges in data collection. 

 

Figure 1. Trail Flow, The screen presented to the participants for each time interval [5]. 

3.  Theoretical Model 

3.1.  Small-World Network 

The small-world network, a structure conceived by Watts and Strogatz in 1998, illustrates a system's 

pronounced clustering. Dynamic systems that feature small-world coupling exhibit robust propagation 

capabilities, particularly in modeling infectious disease transmission [7]. Despite most nodes in the 

small-world model being unconnected, the intervening paths are remarkably short. This concept has 

implications for understanding the structure of the human brain. Characterized as a multifaceted network 

with diverse spatial-temporal scales, the brain is discreetly allocated within specific regions. The marked 

local clustering delineates clear functional divisions across different brain areas, thereby achieving an 

effective balance. Furthermore, the brain's evolutionary process enhances efficiency, striving to curtail 

information processing costs. The neuroanatomy of the brain has been confirmed to be replete with 
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sparse and locally clustered neural connections, features that align with the high clustering and 

abbreviated path length intrinsic to small-world networks [8]. 

In light of these insights, the present research amalgamates the small world network with SNN for 

EEG signal analysis, and each neuron in the SNN is coupled with exact coordinate information. The 

ambition of this work is to emulate neuronal activity in the actual brain as faithfully as possible, thereby 

enhancing the recognition and categorization of the data. 

3.2.  Izhikevich model 

The Izhikevich model is a computational framework introduced by Eugene M. Izhikevich in 2003 for 

characterizing neuronal dynamics [9]. Building on the principles of Hodgkin–Huxley-type neuronal 

models, it translates them into a two-dimensional system of ordinary differential equations, maintaining 

both the fidelity and precision of the original models. By achieving a harmonious balance between 

computational efficiency and modeling accuracy, the Izhikevich model is capable of capturing intricate 

spiking patterns of neurons through elementary mathematical representations. The model's ability to 

reproduce complex spiking and burst-firing behaviors in cortical neurons with merely four parameters 

enables the simulation of extensive neural networks, even on standard personal computers. 

 𝑣′ = 0.04𝑣2 + 5v + 140 − u + I (1) 

 𝑢′ = a(𝑏𝑣 − 𝑢) (2) 

 if v ≥ 30mV,\ then  {
v←c

u←u+d
  (3) 

In equation(1), v denotes the membrane potential, revealing how it evolves over time, u functions as 

its recovery variable, and “I” represents synaptic currents. Equation (2) employs parameter a to 

determine the recovery time scale for u and b indicates its sensitivity to v. As specified in equation(3), 

when v exceeds 30mV, the neuron discharges, leading to a reset of both v and u [9]. 

In this research, an SNN is architected utilizing the Izhikevich model, leveraging the Bindsnet library. 

Bindsnet, an open-source PyTorch-based framework, offers an expeditious simulation of spiking neural 

networks on both CPUs and GPUs. Achieving a remarkable classification accuracy of 95% on the 

MNIST dataset, Bindsnet's effectiveness in the development of SNNs is underscored [10]. The 

Izhikevich model's computational elegance, paired with its accurate rendering of diverse spiking 

phenomena, positions it as a powerful instrument for simulating neural activity within the brain. 

4.  Algorithm 

4.1.  Hybrid Neural Network 

This study devises and implements a hybrid neural network, taking into account the high dimensionality 

and complexity of EEG signals. The need to analyze 128 channels with 1154 samples each demands an 

intricate spatiotemporal analysis. Furthermore, the susceptibility of brain signals to disturbances such as 

noise and electromagnetic interference, coupled with substantial individual variances, makes 

conventional linear analysis techniques inadequate for classifying EEG signals. To counter these 

challenges, the neural network integrates both SNN and CNN to enhance classification performance. 

Initially, SNN is employed to learn the dataset and generate a new spike sequence by monitoring 

neuronal activity. Subsequently, a CNN incorporating backpropagation is used to categorize the spike 

sequences generated by the learned SNN. Backpropagation computes synaptic updates by transmitting 

error signals through reverse connections, mirroring the brain's natural synaptic modifications for 

learning and improvement [11]. This innovative hybrid neural network not only builds a physiologically 

plausible brain-like network for unsupervised learning of genuine biological signals but also ensures the 

efficacy of supervised learning using backpropagation. The architecture of this hybrid network is 

depicted in Figure 2. 
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Figure 2. The structure of SWNet. 

4.2.  Spike Neural Network 

In this experiment, the Spiking Neural Network (SNN) constitutes a three-tiered architecture, 

comprising an input layer, an Izhikevich layer, and a global neuron layer. The input layer, connected to 

the Izhikevich layer, learns from the input signals via the WeightDependentPostPre learning rule, 

facilitated by bindsnet. Within the Izhikevich layer, neurons interconnect following the structure of a 

small-world network. This uniquely crafted small-world network incorporates the three-dimensional 

coordinate details of High-density EEG electrode placement, reflecting the electrode layout (shown in 

Figure 3) used in the Inner speech dataset measurement device. This design culminates in a brain-

mimicking neural network structure, depicted in Figure 4. Through Hebbian learning, neurons in the 

Izhikevich layer continually adjust the inter-neuronal weights, enabling unsupervised learning. The third 

layer, consisting of global neurons, interconnects with each neuron in the Izhikevich layer, overseeing 

the network's holistic behavior. Additionally, the network is equipped with monitors to capture neural 

activities, calculating and generating neural spikes of the simulated neurons. The pulse data detected by 

the global neurons are also integrated as offset into the subsequent classification process, enhancing the 

network's functionality. 

  

Figure 3. Electrode layout of the 128-channel EEG system [12]. 
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Figure 4. A 3D neural network connection schematic generated based on the electroencephalogram 

layout. 

4.3.  Convolution Neural Network 

In this study, the designed CNN network classifies structures arising from the co-occurrence functions 

produced by SNN. It encompasses three convolutional layers, having 8, 16, and 32 filters, respectively. 

Each convolutional layer is followed by a batch normalization layer, stabilizing learning and minimizing 

training time. Post convolution, the network employs three sizes of fully connected layers, supplemented 

with two dropout layers after the first two, utilizing regularization to mitigate overfitting. The ReLU 

activation function is deployed in every convolutional and fully connected layer, aside from the output 

layer, infusing non-linearity to aid the network in deciphering complex patterns within the co-occurrence 

matrix. The Adam is chosen as the optimization method, which is both computationally efficient and 

straightforward to implement. A hallmark of Adam is its employment of the first and second moment 

estimates of the gradient, facilitating an adaptive learning rate for individual parameters [13]. In the 

training process, cross-entropy loss computation is executed in each batch, with weight updates through 

backpropagation. 

5.  Results 

5.1.  Data Preprocessing 

Prior to initiating the experiment, it is essential to preprocess the EEG data supplied by the Inner Speech 

Dataset. This dataset encompasses data from ten distinct volunteers, with each set detailing information 

across three sessions. Specifically, these datasets record the temporal voltage variations across 128 

electrodes. For methodology, the Bens Spiker Algorithm (BSA) is employed to transduce EEG signals 

into a pulse sequence. BSA evaluates two distinct errors at every instance, as represented by Equation 

(4) and Equation (5). In these equations, τ denotes time and h represents the filtering function. An 

analysis of the first error vis-à-vis the differential between the second error and the threshold determines 

the subsequent steps. Should the first error be inferior to this differential, a pulse is generated and 

subsequently subtracted from the input using a filter. In the absence of this condition, no action 

ensues.[14] The experiment avails of the FIR reconstruction filter, establishing an optimal threshold at 

0.9550. Within the dataset, the numbers 31-34 denote the Spanish terms "arriba", "abajo", "derecha", 

and "izquierda". During preprocessing, these denominations are transmuted into a numeric array 

spanning 0-4 and are cataloged under 'input_label'. 

 Σk=0
M abs(s(k + τ) − h(k)) (4) 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/42/20230786

258



 Σk=0
M abs(s(k + τ)) (5) 

5.2.  Evaluating Methodologies and Outcomes 

In this study, an SNN grounded on the Small-World Network paradigm is leveraged to emulate the 

collective activation patterns observed among diverse brain neurons. Input data stems from preprocessed 

pulse sequences, enabling the scrutiny of interactivity characteristics amongst the 128 simulated neurons. 

This study introduces and contrasts three distinct methodologies for harnessing the nuances of EEG 

signal attributes. In the initial methodology, the SNN is operationalized, documenting spike timings for 

128 neurons situated within the Izhikevich layer via a spike monitor. The algorithm subsequently 

generates a co-occurrence function matrix by analyzing pulse time distributions, aiming to encapsulate 

the concurrent excitation patterns of various neurons. The secondary technique incorporates spatial 

weighting to the aforementioned co-occurrence function, determining inter-neuronal distances and 

yielding a corresponding matrix. Elevated spatial weightings proportionally enhance co-occurrence 

frequencies. Conversely, the tertiary approach bypasses intermediary processes, opting for direct 

utilization of spike timing data from neurons. This method modulates simulated pulse data across diverse 

epochs, contingent upon the global neuronal initial excitation's temporal ratio. 

The classification precision associated with the initial two methodologies registers below random 

benchmarks, inhibiting efficacious classification. While the third methodology surpasses this random 

threshold, its classification efficacy remains suboptimal. For enhanced clarity, outcomes from all three 

methodologies were visualized. Pertinently, the initial methodology indicates minimal divergences in 

co-occurrence matrix distributions across varied labels but reveals a general trend of convergence (as 

seen in Figure 5). The subsequent methodology exhibits pronounced susceptibility to spatial weightings 

(evident in Figure 6). Unfortunately, both methods fall short of delivering distinct classificatory features, 

culminating in subpar classification outcomes. Significantly, the 128 neurons roughly demarcate 128 

cerebral regions. Empirical evidence corroborates the notion of concentrated brain region involvement 

during pronunciation, underscoring the potential limitations of emulating co-activation patterns for inner 

speech classification tasks. In stark contrast, the final methodology, which embarks on a direct temporal 

analysis of neuronal activations (illustrated in Figure 7), demonstrates commendable efficacy. 

 

Figure 5. Partial visualization results of the co-occurrence matrix data. 
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Figure 6. Partial visualization results of the co-occurrence matrix data processed with spatial weighting. 

 

Figure 7. Neural spike data visualization. 

5.3.  Classification Performance and Analysis 

Table 1 presents the performance of SWNet across various subjects. While the inner speech recognition 

demonstrated an average accuracy of 27.66% across all subjects, there were distinct performances for 

individual subjects. For instance, Sub 7 exhibited the lowest performance, with an accuracy rate of 

merely 23.33%. On the contrary, Sub 8 showcased the best performance, reaching an accuracy of 

31.50%. For the evaluation of Precision, Recall and F1-score, the average values achieved were 39.33%, 

38.90%, and 36.74% respectively. 

Table 1. SWNet performance for each subject. 

Subject Accuracy Precision Recall F1-score 

1 29.67 43.33 36.39 38.86 

2 29.44 38.43 35.65 34.17 

3 25.67 30.22 33.06 30.45 

4 26.94 44.10 41.32 41.95 

5 26.39 40.45 42.18 39.48 

6 28.70 40.90 46.67 42.16 

7 23.33 39.12 35.88 31.60 

8 31.50 46.03 46.33 44.42 

9 27.22 33.96 42.74 36.75 

10 27.78 36.72 28.75 27.60 

Average 27.66 39.33 38.90 36.74 

Table 2 offers a comparison of performance across different networks when utilizing all channel data 

for classification, drawing data from the Imagined Speech dataset.  
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Table 2. Comparison of SWNet, LSTM and EEGNet. 

Classifier Accuracy 

SWNet 27.66 

LSTM 27.20[15] 

EEGNet 24.90[16] 

The outcomes indicate that even if the model's holistic accuracy remains suboptimal, it exceeds mere 

probabilistic outcomes, highlighting the feasibility and potential of employing hybrid neural networks 

for EEG signal classification. Historical studies reveal that EEG signals can manifest commendable 

accuracy in binary classification tasks. For example, research by Li Wang et al. indicated an average 

accuracy of 66.87% for the imagined speech pertaining to the Chinese characters "left" and "one" [17]. 

Furthermore, Sereshkeh et al. achieved an accuracy of 54.1% when classifying three states: "yes", "no", 

and "rest" [18]. It's evident that as the number of categories escalates, the challenge of classifying EEG 

signals also intensifies. 

The inherent challenge in EEG classification revolves around pinpointing specific brain regions 

activated during language functions. The EEG used in this study, which measures electrical signals 

across the entire cerebral cortex, is confined to 128 channels, thereby limiting its capacity to flawlessly 

record intricate brain activities. When expanding the dimensions of the classification tasks, the precision 

demanded from the data escalates. However, the limited availability of datasets in the domain of EEG-

based inner speech classification often leaves experimental needs unmet. 

The study predominantly zeroes in on the categorization of imagined speech, deliberately steering 

clear of deciphering subjects' linguistic intentions by examining unrelated neural activities. The non-

invasive nature of EEG enables it to effortlessly capture cerebral signals. Consequently, BCIs 

implemented using this methodology can seamlessly discern user intentions during routine activities. 

6.  Conclusion 

The present research unveils a composite neural network model, integrating both SNN and CNN 

functionalities, anchored on the Small-World Network paradigm, tailored for the inner speech quartile 

classification task. While an average accuracy rate of 27.66% outperforms mere chance, considerable 

enhancements remain to be addressed. EEG signals are subject to individual variances, however, this 

study has yet to delve deep into a focused analysis and adaptation of these distinct traits. The analysis 

encompasses data from all channels, without spefically focusing on brain regions dedicated to language 

comprehension and production. As future research progresses, there's potential to incorporate 

mechanisms adept at discerning unique EEG signal patterns from a diverse participant pool, 

accentuating individual variances to bolster accuracy metrics. Moreover, ensuing efforts will pivot 

towards employing localized EEG signals with pronounced attributes for a refined classification 

endeavor, minimizing potential interference from extraneous neural activities. 
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