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Abstract. This survey aims to comprehensively review and analyze the progress in enhancing
the stability of generative adversarial networks (GANS). It systematically explores the evolution
of GAN architectures, loss functions, and regularization techniques, focusing on their impact on
training stability. In addition, this article briefly discusses the main challenges encountered
during GAN training, such as mode collapse and vanishing/exploding gradients, and synthesizes
various strategies and methods developed to alleviate these problems. Finally, the survey
highlights the ongoing need for innovative solutions to improve the stability of GAN training
and ensure its effective and robust application in various fields.
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1. Introduction

Generative adversarial networks (GANs) have become a research hotspot in deep learning and computer
vision since they were proposed by Goodfellow et al. in 2014[1]. GANSs can generate data similar to the
real data distribution through the game process of a generator and a discriminator. Due to its powerful
generation capabilities, GANs have been widely used in many fields, such as image generation, style
transfer, and data enhancement. However, the training stability of GANs has been a major issue limiting
their development. Many researchers have proposed different variations and techniques to solve this
problem. This article aims to review the basic principles and development history of GANSs, as well as
various factors that affect the stability of GANs training and corresponding solutions. This study will
introduce the basic architecture and principles of GANs, as well as their main variants and features.
Then it will delve into the main factors that affect the stability of GANs training, including mode
collapse, vanishing/exploding gradients, etc., and discuss the causes and effects of these problems.
Finally, the survey will review and summarize the current main methods and technologies to improve
the stability of GANs training, as well as their application cases.

2. Basic information about GANs

The Generative Adversarial Network (GAN) model consists of a generator (G) and a discriminator (D),
which play games with each other during the model training process [1]. The role of the generator is
similar to a counterfeiter in the market, while the discriminator is like a supervisor. What is different
from reality is that the counterfeiter, that is, the generator, can and can only send the return signal through
the discriminator to repeatedly test whether it has succeeded in counterfeiting. In this simulated market,
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the generator continuously attempts to generate increasingly realistic fake data, while the discriminator
strives to improve its ability to distinguish between real and fake data. The generator continuously
adjusts its strategy based on the feedback from the discriminator, intending to generate data that can fool
the discriminator.

However, such a training process is not always ideal. First, the volume and diversity of data is an
essential factor. If the training data is not rich and diverse enough, the generator may fall into overfitting
and generate data that lacks diversity. Secondly, the training process of GAN is relatively abstract, and
it is difficult to manually evaluate performance or determine an explicit criterion for stopping training.
The original GAN uses cross-entropy as the loss function. One drawback of this loss function is the
problem that can lead to mode collapse, where the generator always generates the same or similar
samples. In addition, the cross-entropy loss function may also cause the vanishing gradient problem,
making it difficult for the generator to obtain effective gradient updates during the training process [1].

Conditional Generative Adversarial Networks (cGANs) were proposed by Mehdi Mirza and Simon
Osindero in 2014[2]. ¢cGANs allow the introduction of labels or other conditional information as
additional input variables during the generation process. This design enables the model to generate
samples with specific attributes based on specified conditions. This does not directly reduce the impact
of the loss function on the model, but it helps guide the model to generate data that is more consistent
with specific conditions. Since the generation process of cGANs relies on conditional variables, the
selection and design of conditional variables becomes particularly important. Inappropriate condition
variables may affect the training stability of the model and the quality of the generated samples [3].
Therefore, the training stability of cGANs relies heavily on the quality of the data and the correlation of
the conditional variables with the data.

DCGAN (Deep Convolutional Generative Adversarial Networks) was proposed by Alec Radford,
Luke Metz, and Soumith Chintala in 2015[4]. DCGAN has made a series of structural improvements
based on the original GAN: it uses convolutional layers and deconvolutional layers in the generator and
discriminator; it uses the Leaky ReLLU activation function in the discriminator; and in the generator, The
ReLU and Tanh activation functions are used. These improvements have significantly improved the
model performance and training stability of DCGAN when processing image data. Regarding the loss
function, DCGAN still uses the loss function form of the original GAN, which minimizes the
confrontation loss between the generator and the discriminator [4]. However, due to the improvement
of its network structure, DCGAN is relatively more stable during the training process, alleviating the
problems of gradient disappearance and mode collapse. However, as a non-convex game process, it is
still difficult to avoid falling into local optimality, resulting in low quality or lack of diversity in the
generated samples.

CycleGAN was proposed in 2017 by Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros
[5]. The model contains two generators and two discriminators. The two generators are responsible for
the conversion from one domain to another, and the two discriminators are used to determine whether
the conversion results are realistic. At the same time, in addition to using traditional adversarial losses,
CycleGAN also adds cycle consistency losses. The adversarial loss ensures that the generated images
are realistic in the target domain, while the cycle consistency loss ensures that the transformation is
reversible and consistent. The combination of these two losses enables CycleGAN to achieve sample
transformation between different domains without supervision. However, although CycleGAN
dramatically reduces dependence on data due to cycle consistency loss and special model structure, its
generation quality may not be as good as models using paired training data. Especially in some complex
transformation tasks, CycleGAN may have problems with the generated results lacking logic or losing
details.

WGAN (Wasserstein GAN) was proposed by Martin Arjovsky, Soumith Chintala, and Léon Bottou
in 2017[6]. It introduces a new loss function based on Wasserstein distance (also known as Earth
Mover’s Distance), which measures the distance between two probability distributions. Unlike
traditional GAN, the discriminator of WGAN uses a linear layer without an activation function as the
output layer. This means that the discriminator is no longer just distinguishing between real and
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generated samples, but trying to find a way to best fit the Wasserstein distance between the two
distributions. Therefore, the training process of WGAN is relatively more stable, and its loss function
value has a more precise physical meaning, which can be used as an effective indicator to evaluate model
performance. In addition, WGAN clips the weights of the discriminator during the training process to
satisfy the Lipschitz constraint. This design makes WGAN perform well in solving the mode collapse
problem in traditional GAN, and the generated samples have better diversity. However, it also limits the
representation ability of the model, which reduces the stability of training and the quality of generated
samples [6].

3. Factors that affect stability

By browsing the development history of the GAN model, it can be observed that scholars' improvements
to the model are largely based on improving the stability of the model training process. Next, this survey
will list and discuss some common instability factors.

The first is the most basic data dependency. The most common problem is that the data is too small,
resulting in model overfitting. The characteristic of GAN is that it can generate samples by itself.
However, if the data is too small, the model will have a meager generalization ability, making the model
meaningless in practical applications [7]. In addition, due to the nature of the generator to create
"realistic" data, if the input data contains a lot of noise or outliers, the GAN model may constantly try
to copy these meaningless features during the training process, making the final model confusing and
inapplicable. Similarly, if the data type is too homogeneous and lacks diversity, the generator may only
generate certain patterns in the data set and produce overly similar outputs, leading to pattern collapse.
In certain types of GAN models, such as conditional GAN, the training of the model relies too much on
data labels or other condition information. If these labels or condition information are inaccurate or
inconsistent, the stability of model training will be significantly reduced [2].

Overfitting is also an influencing factor at the data level. Overfitting usually occurs when the
complexity of the model is so high that it starts to learn the noise and unimportant details in the training
data instead of capturing the true distribution of the data [8]. Specifically, the model performs extremely
well on the training data because it can even remember random noise and outliers. However, model
performance often drops significantly when applied to test new, unseen data. This is mainly because the
model is too complex or the training time is too long, causing the model to become too sensitive to small
changes in the training data and lack sufficient generalization ability when facing new data [9].

The resistance to minor changes or noise in the input data mentioned above has one word to describe
it, and that is robustness. Robustness is an essential indicator of model stability, especially in training
GANs. A GAN model with low robustness will have difficulty maintaining the stability of the model
output when faced with small changes or noise in the input data and may cause considerable changes in
the model output due to small fluctuations in the input. Improving robust habits not only helps to
improve the generalization ability of the model so that it can perform well on unseen data but also helps
to improve the stability of model training and reduce oscillations and instability during the training
process [10].

Oscillation and non-convergence are usually mentioned together when discussing when GAN ends
training. When training GANSs, it is usually observing the changes in the loss function and the quality of
the generated samples to judge whether the model has been trained sufficiently or whether training
should be stopped. Issues of oscillation and non-convergence can make this judgment particularly
difficult [11]. This problem usually occurs due to improper selection of model architecture or improper
setting of hyperparameters (such as learning rate). The generator and discriminator in the GANs model
are trained alternately [1], so if the balance between the two is broken, it may produce "one-sided" or
alternately "one-sided" results. For example, suppose a generator is much more potent than another
discriminator. In that case, it may cause the discriminator to be unable to distinguish true from false,
causing the generator to continue to reduce the quality of its generation. Then the discriminator can
always successfully distinguish true from false, and the cycle repeats.
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Mode collapse is also one of the common problems when training GANS. It can be regarded as an
alternative manifestation of the oscillation problem. Mode collapse occurs when the generator starts
generating highly similar or almost identical samples, ignoring the diversity of the input data. In other
words, the generator found a "shortcut" to deceive the discriminator and only generated a few samples
that the discriminator considered to be "real" without capturing the diversity and richness of the real
data distribution, falling into a local optimum. This makes it difficult for the model to reach a good
balance point, making the training process difficult to converge [12].

Gradient disappearance and gradient explosion are extreme problems encountered during the training
process that affect stability. In GAN, the goal of the discriminator is to distinguish real samples from
generated samples, while the generator tries to generate samples that can fool the discriminator [13]. If
the discriminator is trained too well, the gradient of the generator may disappear because the gradient
of the discriminator becomes very small during backpropagation. This causes the generator's weights to
update very slowly, making it difficult for the generator to improve the samples it generates, which in
turn causes model training to stagnate and the generator to be unable to generate convincing fake
samples. On the contrary, during the training process of GAN, if the balance between the generator and
the discriminator is broken, it may cause a gradient explosion. For example, if the generator generates
poor-quality samples, the discriminator may easily differentiate between real and generated samples,
causing the gradient to become very large during backpropagation. This will cause the model weights
to be updated too drastically, making the model training unstable, which will, in turn, make the training
process of the generator and discriminator very difficult, and even make the model unable to converge
[14].

4. Techniques and applications to improve stability
Certainly, whether in the past or now, scholars are constantly seeking to explore new technologies in
order to increase the stability of the GANs training process and obtain better-performing models.

Network architecture is one of the first technologies to be thought of and applied in innovation, and
the proposal of DCGAN is based on this. This is a landmark model that significantly improves the
performance of GAN on image generation tasks through a series of innovative network architecture
designs. DCGAN uses convolutional layers and deconvolutional layers, with special emphasis on the
application of convolutional neural networks (CNN) in image generation [15]. This enables DCGAN to
take advantage of CNN to better capture and generate the hierarchical structure and spatial information
of images. DCGAN also introduces Batch Normalization (BN), a technology that can alleviate the
vanishing gradient problem and enable deeper training of the model. By standardizing the data of each
mini-batch, BN can maintain a relatively stable distribution of the input of each layer in the network,
which helps to improve the training stability and convergence speed of the model [4].

DCGAN also simplifies the model structure and reduces the number of parameters of the model by
removing the fully connected layers in the generator and discriminator. This simplification not only
helps mitigate the risk of overfitting but also makes the model easier to train and optimize. In the choice
of activation function, DCGAN uses Leaky ReLU in the discriminator and ReLU and Tanh in the
generator [4]. The Leaky ReLU function allows small negative values to pass, which means that even if
the input value is negative, Leaky ReL.U will have a non-zero output. Therefore, even when the input
value is negative, the gradient does not disappear completely, thus maintaining the flow of information.
The ReLU function in the generator is used as the activation function of the hidden layer. The ReLU
function directly outputs the value when the input value is positive, and outputs zero when the input
value is negative. This design also helps alleviate the vanishing gradient problem. The Tanh function is
used in the generator output layer to compress output values to between -1 and 1, which helps the model's
output match the common range of image data. These network architecture innovations enable DCGAN
to exhibit higher stability during training and generate higher-quality samples, laying the foundation for
subsequent GAN research and development [4].

The improvement of the loss function also plays a crucial role in the training stability of the GAN
model. In particular, Wasserstein GAN (WGAN) brings significant improvements to the training
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stability of the GAN model by introducing Wasserstein distance as the loss function. Wasserstein
distance, as a measure of the difference between two probability distributions, has smoother gradient
characteristics in GAN training than the cross-entropy loss function. In traditional GANSs, the cross-
entropy loss function is commonly used. When the samples generated by the generator are significantly
different from the real samples, the discriminator can easily distinguish between true and false samples
[1]. As a result, during backpropagation, the generator receives a weak gradient signal. This may lead
to the vanishing gradient problem, making the training of the generator challenging. The Wasserstein
distance can provide meaningful gradients throughout the training process. Even when the generator
performance is poor, Wasserstein distance can provide effective gradient information to guide the
generator to update and learn more effectively. This characteristic makes WGAN more stable and easier
to converge during the training process [6].

In addition, in WGAN, the discriminator is no longer a binary classifier but becomes a critic function
[6]. In traditional GAN, the goal of the discriminator is to distinguish whether the input sample is a real
sample or a generated sample and output a probability value. In WGAN, the task of the discriminator
(critic) is to fit the Wasserstein distance between the real data distribution and the generated data
distribution as closely as possible. This design change reduces oscillations and instability during model
training because the gradient information provided by the critic is more direct and stable. In addition,
since critic is no longer limited by the cross-entropy loss function, it can provide outputs that vary within
a wider range, which also helps provide richer and more effective gradient information. Moreover, in
WGAN, critic training is constrained, and it is necessary to ensure that the critic function is 1-Lipschitz
continuous, which is usually achieved through weight clipping or gradient penalty, which helps ensure
effective and accurate estimation of Wasserstein distance. WGAN also effectively alleviates the mode
collapse problem. Since the Wasserstein distance provides richer gradient information, the generator can
better capture the diversity and richness of the data distribution and avoid generating too similar samples
[6]. These improvements enable WGAN to exhibit better stability and convergence during training.

Spectral Normalization is a regularization technique used for stable training in Generative
Adversarial Networks (GANs), proposed by Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida in 2018 [16]. This technology is mainly applied to the weight matrix of the discriminator.
Limiting the spectral norm of the weight matrix (that is, the maximum singular value of the weight
matrix), prevents the gradient explosion problem and ensures the stability of the training process. The
basic principle of spectral normalization is to modify the weight matrix in the network so that its spectral
norm does not exceed 1. For each weight matrix, spectral normalization divides its maximum singular
value, so that the processed weight matrix has better stability properties. This processing method helps
balance the competitive relationship between the generator and the discriminator, prevents the
discriminator from becoming too powerful prematurely, and allows the generator to obtain useful
gradient information in the early stages of training. It therefore helps avoid mode collapse problems,
allowing the generator to generate more diverse samples.

5. Conclusion

It is foreseeable that the stability of the GANs training process will still be an urgent problem to be
solved in the future. However, it can be seen from the discussion that the current technology has become
more and more refined in improving stability. I call on more scholars to focus on new data processing
functions, especially the functions used by the discriminator, to obtain a more stable GAN model. From
the earliest changes to the model architecture to changing the loss function to proposing new training
methods, this is a progressive process, and this article explores this process.
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