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Abstract. This survey aims to comprehensively review and analyze the progress in enhancing 
the stability of generative adversarial networks (GANs). It systematically explores the evolution 
of GAN architectures, loss functions, and regularization techniques, focusing on their impact on 
training stability. In addition, this article briefly discusses the main challenges encountered 
during GAN training, such as mode collapse and vanishing/exploding gradients, and synthesizes 
various strategies and methods developed to alleviate these problems. Finally, the survey 
highlights the ongoing need for innovative solutions to improve the stability of GAN training 
and ensure its effective and robust application in various fields. 
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1.  Introduction 
Generative adversarial networks (GANs) have become a research hotspot in deep learning and computer 
vision since they were proposed by Goodfellow et al. in 2014[1]. GANs can generate data similar to the 
real data distribution through the game process of a generator and a discriminator. Due to its powerful 
generation capabilities, GANs have been widely used in many fields, such as image generation, style 
transfer, and data enhancement. However, the training stability of GANs has been a major issue limiting 
their development. Many researchers have proposed different variations and techniques to solve this 
problem. This article aims to review the basic principles and development history of GANs, as well as 
various factors that affect the stability of GANs training and corresponding solutions. This study will 
introduce the basic architecture and principles of GANs, as well as their main variants and features. 
Then it will delve into the main factors that affect the stability of GANs training, including mode 
collapse, vanishing/exploding gradients, etc., and discuss the causes and effects of these problems. 
Finally, the survey will review and summarize the current main methods and technologies to improve 
the stability of GANs training, as well as their application cases. 

2.  Basic information about GANs 
The Generative Adversarial Network (GAN) model consists of a generator (G) and a discriminator (D), 
which play games with each other during the model training process [1]. The role of the generator is 
similar to a counterfeiter in the market, while the discriminator is like a supervisor. What is different 
from reality is that the counterfeiter, that is, the generator, can and can only send the return signal through 
the discriminator to repeatedly test whether it has succeeded in counterfeiting. In this simulated market, 
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the generator continuously attempts to generate increasingly realistic fake data, while the discriminator 
strives to improve its ability to distinguish between real and fake data. The generator continuously 
adjusts its strategy based on the feedback from the discriminator, intending to generate data that can fool 
the discriminator.  

However, such a training process is not always ideal. First, the volume and diversity of data is an 
essential factor. If the training data is not rich and diverse enough, the generator may fall into overfitting 
and generate data that lacks diversity. Secondly, the training process of GAN is relatively abstract, and 
it is difficult to manually evaluate performance or determine an explicit criterion for stopping training. 
The original GAN uses cross-entropy as the loss function. One drawback of this loss function is the 
problem that can lead to mode collapse, where the generator always generates the same or similar 
samples. In addition, the cross-entropy loss function may also cause the vanishing gradient problem, 
making it difficult for the generator to obtain effective gradient updates during the training process [1]. 

Conditional Generative Adversarial Networks (cGANs) were proposed by Mehdi Mirza and Simon 
Osindero in 2014[2]. cGANs allow the introduction of labels or other conditional information as 
additional input variables during the generation process. This design enables the model to generate 
samples with specific attributes based on specified conditions. This does not directly reduce the impact 
of the loss function on the model, but it helps guide the model to generate data that is more consistent 
with specific conditions. Since the generation process of cGANs relies on conditional variables, the 
selection and design of conditional variables becomes particularly important. Inappropriate condition 
variables may affect the training stability of the model and the quality of the generated samples [3]. 
Therefore, the training stability of cGANs relies heavily on the quality of the data and the correlation of 
the conditional variables with the data.  

DCGAN (Deep Convolutional Generative Adversarial Networks) was proposed by Alec Radford, 
Luke Metz, and Soumith Chintala in 2015[4]. DCGAN has made a series of structural improvements 
based on the original GAN: it uses convolutional layers and deconvolutional layers in the generator and 
discriminator; it uses the Leaky ReLU activation function in the discriminator; and in the generator, The 
ReLU and Tanh activation functions are used. These improvements have significantly improved the 
model performance and training stability of DCGAN when processing image data. Regarding the loss 
function, DCGAN still uses the loss function form of the original GAN, which minimizes the 
confrontation loss between the generator and the discriminator [4]. However, due to the improvement 
of its network structure, DCGAN is relatively more stable during the training process, alleviating the 
problems of gradient disappearance and mode collapse. However, as a non-convex game process, it is 
still difficult to avoid falling into local optimality, resulting in low quality or lack of diversity in the 
generated samples. 

CycleGAN was proposed in 2017 by Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros 
[5]. The model contains two generators and two discriminators. The two generators are responsible for 
the conversion from one domain to another, and the two discriminators are used to determine whether 
the conversion results are realistic. At the same time, in addition to using traditional adversarial losses, 
CycleGAN also adds cycle consistency losses. The adversarial loss ensures that the generated images 
are realistic in the target domain, while the cycle consistency loss ensures that the transformation is 
reversible and consistent. The combination of these two losses enables CycleGAN to achieve sample 
transformation between different domains without supervision. However, although CycleGAN 
dramatically reduces dependence on data due to cycle consistency loss and special model structure, its 
generation quality may not be as good as models using paired training data. Especially in some complex 
transformation tasks, CycleGAN may have problems with the generated results lacking logic or losing 
details. 

WGAN (Wasserstein GAN) was proposed by Martin Arjovsky, Soumith Chintala, and Léon Bottou 
in 2017[6]. It introduces a new loss function based on Wasserstein distance (also known as Earth 
Mover’s Distance), which measures the distance between two probability distributions. Unlike 
traditional GAN, the discriminator of WGAN uses a linear layer without an activation function as the 
output layer. This means that the discriminator is no longer just distinguishing between real and 
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generated samples, but trying to find a way to best fit the Wasserstein distance between the two 
distributions. Therefore, the training process of WGAN is relatively more stable, and its loss function 
value has a more precise physical meaning, which can be used as an effective indicator to evaluate model 
performance. In addition, WGAN clips the weights of the discriminator during the training process to 
satisfy the Lipschitz constraint. This design makes WGAN perform well in solving the mode collapse 
problem in traditional GAN, and the generated samples have better diversity. However, it also limits the 
representation ability of the model, which reduces the stability of training and the quality of generated 
samples [6]. 

3.  Factors that affect stability 
By browsing the development history of the GAN model, it can be observed that scholars' improvements 
to the model are largely based on improving the stability of the model training process. Next, this survey 
will list and discuss some common instability factors. 

The first is the most basic data dependency. The most common problem is that the data is too small, 
resulting in model overfitting. The characteristic of GAN is that it can generate samples by itself. 
However, if the data is too small, the model will have a meager generalization ability, making the model 
meaningless in practical applications [7]. In addition, due to the nature of the generator to create 
"realistic" data, if the input data contains a lot of noise or outliers, the GAN model may constantly try 
to copy these meaningless features during the training process, making the final model confusing and 
inapplicable. Similarly, if the data type is too homogeneous and lacks diversity, the generator may only 
generate certain patterns in the data set and produce overly similar outputs, leading to pattern collapse. 
In certain types of GAN models, such as conditional GAN, the training of the model relies too much on 
data labels or other condition information. If these labels or condition information are inaccurate or 
inconsistent, the stability of model training will be significantly reduced [2]. 

Overfitting is also an influencing factor at the data level. Overfitting usually occurs when the 
complexity of the model is so high that it starts to learn the noise and unimportant details in the training 
data instead of capturing the true distribution of the data [8]. Specifically, the model performs extremely 
well on the training data because it can even remember random noise and outliers. However, model 
performance often drops significantly when applied to test new, unseen data. This is mainly because the 
model is too complex or the training time is too long, causing the model to become too sensitive to small 
changes in the training data and lack sufficient generalization ability when facing new data [9]. 

The resistance to minor changes or noise in the input data mentioned above has one word to describe 
it, and that is robustness. Robustness is an essential indicator of model stability, especially in training 
GANs. A GAN model with low robustness will have difficulty maintaining the stability of the model 
output when faced with small changes or noise in the input data and may cause considerable changes in 
the model output due to small fluctuations in the input. Improving robust habits not only helps to 
improve the generalization ability of the model so that it can perform well on unseen data but also helps 
to improve the stability of model training and reduce oscillations and instability during the training 
process [10]. 

Oscillation and non-convergence are usually mentioned together when discussing when GAN ends 
training. When training GANs, it is usually observing the changes in the loss function and the quality of 
the generated samples to judge whether the model has been trained sufficiently or whether training 
should be stopped. Issues of oscillation and non-convergence can make this judgment particularly 
difficult [11]. This problem usually occurs due to improper selection of model architecture or improper 
setting of hyperparameters (such as learning rate). The generator and discriminator in the GANs model 
are trained alternately [1], so if the balance between the two is broken, it may produce "one-sided" or 
alternately "one-sided" results. For example, suppose a generator is much more potent than another 
discriminator. In that case, it may cause the discriminator to be unable to distinguish true from false, 
causing the generator to continue to reduce the quality of its generation. Then the discriminator can 
always successfully distinguish true from false, and the cycle repeats. 
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Mode collapse is also one of the common problems when training GANs. It can be regarded as an 
alternative manifestation of the oscillation problem. Mode collapse occurs when the generator starts 
generating highly similar or almost identical samples, ignoring the diversity of the input data. In other 
words, the generator found a "shortcut" to deceive the discriminator and only generated a few samples 
that the discriminator considered to be "real" without capturing the diversity and richness of the real 
data distribution, falling into a local optimum. This makes it difficult for the model to reach a good 
balance point, making the training process difficult to converge [12]. 

Gradient disappearance and gradient explosion are extreme problems encountered during the training 
process that affect stability. In GAN, the goal of the discriminator is to distinguish real samples from 
generated samples, while the generator tries to generate samples that can fool the discriminator [13]. If 
the discriminator is trained too well, the gradient of the generator may disappear because the gradient 
of the discriminator becomes very small during backpropagation. This causes the generator's weights to 
update very slowly, making it difficult for the generator to improve the samples it generates, which in 
turn causes model training to stagnate and the generator to be unable to generate convincing fake 
samples. On the contrary, during the training process of GAN, if the balance between the generator and 
the discriminator is broken, it may cause a gradient explosion. For example, if the generator generates 
poor-quality samples, the discriminator may easily differentiate between real and generated samples, 
causing the gradient to become very large during backpropagation. This will cause the model weights 
to be updated too drastically, making the model training unstable, which will, in turn, make the training 
process of the generator and discriminator very difficult, and even make the model unable to converge 
[14]. 

4.  Techniques and applications to improve stability 
Certainly, whether in the past or now, scholars are constantly seeking to explore new technologies in 
order to increase the stability of the GANs training process and obtain better-performing models. 

Network architecture is one of the first technologies to be thought of and applied in innovation, and 
the proposal of DCGAN is based on this. This is a landmark model that significantly improves the 
performance of GAN on image generation tasks through a series of innovative network architecture 
designs. DCGAN uses convolutional layers and deconvolutional layers, with special emphasis on the 
application of convolutional neural networks (CNN) in image generation [15]. This enables DCGAN to 
take advantage of CNN to better capture and generate the hierarchical structure and spatial information 
of images. DCGAN also introduces Batch Normalization (BN), a technology that can alleviate the 
vanishing gradient problem and enable deeper training of the model. By standardizing the data of each 
mini-batch, BN can maintain a relatively stable distribution of the input of each layer in the network, 
which helps to improve the training stability and convergence speed of the model [4]. 

DCGAN also simplifies the model structure and reduces the number of parameters of the model by 
removing the fully connected layers in the generator and discriminator. This simplification not only 
helps mitigate the risk of overfitting but also makes the model easier to train and optimize. In the choice 
of activation function, DCGAN uses Leaky ReLU in the discriminator and ReLU and Tanh in the 
generator [4]. The Leaky ReLU function allows small negative values to pass, which means that even if 
the input value is negative, Leaky ReLU will have a non-zero output. Therefore, even when the input 
value is negative, the gradient does not disappear completely, thus maintaining the flow of information. 
The ReLU function in the generator is used as the activation function of the hidden layer. The ReLU 
function directly outputs the value when the input value is positive, and outputs zero when the input 
value is negative. This design also helps alleviate the vanishing gradient problem. The Tanh function is 
used in the generator output layer to compress output values to between -1 and 1, which helps the model's 
output match the common range of image data. These network architecture innovations enable DCGAN 
to exhibit higher stability during training and generate higher-quality samples, laying the foundation for 
subsequent GAN research and development [4]. 

The improvement of the loss function also plays a crucial role in the training stability of the GAN 
model. In particular, Wasserstein GAN (WGAN) brings significant improvements to the training 
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stability of the GAN model by introducing Wasserstein distance as the loss function. Wasserstein 
distance, as a measure of the difference between two probability distributions, has smoother gradient 
characteristics in GAN training than the cross-entropy loss function. In traditional GANs, the cross-
entropy loss function is commonly used. When the samples generated by the generator are significantly 
different from the real samples, the discriminator can easily distinguish between true and false samples 
[1]. As a result, during backpropagation, the generator receives a weak gradient signal. This may lead 
to the vanishing gradient problem, making the training of the generator challenging. The Wasserstein 
distance can provide meaningful gradients throughout the training process. Even when the generator 
performance is poor, Wasserstein distance can provide effective gradient information to guide the 
generator to update and learn more effectively. This characteristic makes WGAN more stable and easier 
to converge during the training process [6]. 

In addition, in WGAN, the discriminator is no longer a binary classifier but becomes a critic function 
[6]. In traditional GAN, the goal of the discriminator is to distinguish whether the input sample is a real 
sample or a generated sample and output a probability value. In WGAN, the task of the discriminator 
(critic) is to fit the Wasserstein distance between the real data distribution and the generated data 
distribution as closely as possible. This design change reduces oscillations and instability during model 
training because the gradient information provided by the critic is more direct and stable. In addition, 
since critic is no longer limited by the cross-entropy loss function, it can provide outputs that vary within 
a wider range, which also helps provide richer and more effective gradient information. Moreover, in 
WGAN, critic training is constrained, and it is necessary to ensure that the critic function is 1-Lipschitz 
continuous, which is usually achieved through weight clipping or gradient penalty, which helps ensure 
effective and accurate estimation of Wasserstein distance. WGAN also effectively alleviates the mode 
collapse problem. Since the Wasserstein distance provides richer gradient information, the generator can 
better capture the diversity and richness of the data distribution and avoid generating too similar samples 
[6]. These improvements enable WGAN to exhibit better stability and convergence during training. 

Spectral Normalization is a regularization technique used for stable training in Generative 
Adversarial Networks (GANs), proposed by Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and 
Yuichi Yoshida in 2018 [16]. This technology is mainly applied to the weight matrix of the discriminator. 
Limiting the spectral norm of the weight matrix (that is, the maximum singular value of the weight 
matrix), prevents the gradient explosion problem and ensures the stability of the training process. The 
basic principle of spectral normalization is to modify the weight matrix in the network so that its spectral 
norm does not exceed 1. For each weight matrix, spectral normalization divides its maximum singular 
value, so that the processed weight matrix has better stability properties. This processing method helps 
balance the competitive relationship between the generator and the discriminator, prevents the 
discriminator from becoming too powerful prematurely, and allows the generator to obtain useful 
gradient information in the early stages of training. It therefore helps avoid mode collapse problems, 
allowing the generator to generate more diverse samples. 

5.  Conclusion 
It is foreseeable that the stability of the GANs training process will still be an urgent problem to be 
solved in the future. However, it can be seen from the discussion that the current technology has become 
more and more refined in improving stability. I call on more scholars to focus on new data processing 
functions, especially the functions used by the discriminator, to obtain a more stable GAN model. From 
the earliest changes to the model architecture to changing the loss function to proposing new training 
methods, this is a progressive process, and this article explores this process. 
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