

Application of Self-assembly of Nanomaterials in Electrochemical Reduction of Carbon Dioxide

Yi Lu^{1,a,*}

¹*Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhejiang, 316022, China*

a. 15968487739@163.com

**corresponding author*

Abstract: The rapid development of nanomaterial self-assembly technology has greatly favored the field of electrochemical CO₂ reduction reaction (CO₂RR) and allowed for better control of catalyst structure and composition. Various self-assembly methods, such as DNA-directed assembly, matrix-assisted technology and solvent evaporation, have been used to improve catalytic efficiency and selectivity. Various newly created self-assembled catalysts have also contributed to the development of CO₂RR, such as metal oxide catalysts, organic polymers and frameworks, organometallic frameworks and hybrid systems. This paper explored the application of the self-assembled nanocatalysts in CO₂RR through a literature review and case studies, with an emphasis on how these methods can reduce CO₂ to valuable products such as CO, methane and C₂ compounds. The main results highlight the impact of self-assembled structures on improving reaction kinetics and product selectivity. The paper finds that self-assembly technologies and self-assembly nanocatalysts offer potential breakthroughs in improving CO₂ reduction efficiency and contribute to the development of carbon capture and conversion technologies.

Keywords: Nanomaterials, Self-Assembly, CO₂, Electrochemical Catalysis.

1. Introduction

In recent years, electrochemical reduction of carbon dioxide (CO₂RR) has attracted considerable attention as a promising approach to mitigating the effects of climate change by converting CO₂ into valuable fuels and chemicals. The efficiency of CO₂RR depends largely on the design of advanced catalysts capable of achieving high selectivity, activity and stability. Self-assembly techniques, which allow precise control of the morphology and composition of nanomaterials, emerged as a key strategy to improve the catalytic performance of CO₂RR.

Recent studies have demonstrated significant progress in the application of self-assembled nanomaterials for electrochemical CO₂ reduction (CO₂RR) reactions. A rapid and controllable in situ self-assembly method for main group metal nanofilms was developed, significantly improving the efficiency of electroreduction of CO₂ to liquid fuels in flow cells. Their research highlights how crucial it is to precisely regulate the development of nanofilms in order to achieve high surface area and optimized catalytic activity [1]. Similarly, a self-supporting copper-based electrode fabricated by electrospinning was explored, investigated and proved to be highly effective in converting CO₂ to methane. It underscores the capability of nanostructured copper materials to enhance methane

selectivity and diminish energy demands [2]. The modular construction of tessellated octahedra assembles into hierarchical spherical aggregates that exhibit enhanced electrocatalytic activity for CO₂ reduction [3]. This new design facilitates efficient electron transfer and product selectivity, illustrating the increasing emphasis on geometrically controlled self-assembly strategies to optimize catalytic performance. Together, these studies highlight the essential role of self-assembled nanomaterials in achieving higher efficiency and selectivity in CO₂RR, opening up exciting new possibilities for the creation of next-generation catalysts.

This paper aims to examine the applications of self-assembled nanomaterials in CO₂ electroreduction, with a focus on the latest advances in catalyst design and their implications for CO₂ conversion technologies. Through a comprehensive literature review and case study analysis, the paper investigates the impact of various self-assembly techniques—such as solvent evaporation, template-assisted assembly, and DNA-directed assembly—on the electroreduction of CO₂. By exploring these techniques and their respective influences on catalytic performance, this paper contributes to a deeper understanding of how self-assembled nanomaterials can optimize CO₂RR processes, offering insights into potential future developments in carbon capture and conversion technologies.

2. Literature Review

The self-assembly of nanomaterials has revolutionized the field of electrochemical CO₂ reduction by allowing precise control of the structure and composition of the catalyst. Various self-assembly techniques, including DNA orientation methods, matrix assist and solvent evaporation, have been used to develop nanocatalysts with enhanced CO₂RR properties. At the same time, more and more self-assembled nanocatalysts with different structures and uses have emerged.

2.1. Application of self-assembly technology in CO₂RR

Self-assembly technology has shown significant promise in enhancing the performance of CO₂ electroreduction reactions (CO₂RR) through innovative approaches that optimize catalytic architecture. A prominent instance is the application of DNA-directed assembly, evidenced by research that illustrated the efficient electroreduction of CO₂ via the immobilization of the DNA-directed catalyst [4]. This method allowed a precise spatial arrangement of the catalytic sites, improving the reaction environment and improving the efficiency of electron transfer. DNA programmability enables fine tuning of catalyst architecture, highlighting the unique potential of biomolecular strategies in the design of nanomaterials for electrochemical applications.

Likewise, additional research illustrated the novel application of DNA-directed assembly by exhibiting very efficient CO₂ electroreduction via the immobilization of the DNA-directed catalyst [5]. These nanovesicles were used to stabilize Cu nanoparticles for electroreduction of CO₂. The model not only provided structural guidance during the assembly process, but also facilitated the controlled release of nanoparticles, thereby optimizing overall catalytic activity and selectivity to desired products.

The solvent evaporation technique was utilized in a different application of self-assembly to facilitate the self-assembly of distinctive metal sites integrated into covalent organic frameworks (COFs) [6]. This technique allowed the formation of multidimensional nanostructures, improving the electroreduction efficiency of CO₂. The solvent evaporation process controlled the crystallization of the materials, promoting uniformity of size and shape, which is essential to achieve consistent catalytic performance.

2.2. Application of self-assembled nanocatalysts in CO₂ RR

Nanocatalysts created through self-assembly techniques have proven to be highly effective in promoting CO₂ reduction reactions, especially by enhancing reaction kinetics and selectivity. For example, one study illustrated the synthesis of ZnO nanosheets via nanoparticle self-assembly, resulting in an enhanced reduction of CO₂ to CO [7]. Their approach notably improves the surface and active sites, which are crucial for optimising reaction kinetics.

In another study, researchers employed high-density nanocarp microstructures, markedly enhancing the efficacy of CO₂ removal owing to their distinctive geometric topologies that facilitated improved contact with CO₂ [8]. This geometrical approach underscores the importance of structural design in enhancing the catalytic process.

The self-assembly of anthraquinone-based covalent organic frameworks into one-dimensional superstructures has been demonstrated to enhance the efficient conversion of CO₂ to methane [9]. This structure facilitated the high-efficiency conversion of CO₂ to methane, illustrating the potential of organic materials to enhance electrochemical transformations. The self-assembly process allowed precise control of the architecture, which is crucial for optimizing electrochemical activity.

Furthermore, a study on self-assembled cuprous coordination polymers demonstrated their effectiveness as catalysts for the electrochemical reduction of CO₂ to C₂ products [10]. Their work emphasizes the adjustable properties of MOFs, demonstrating that self-assembly not only facilitates the creation of active sites, but also helps structure the catalyst to maximize selectivity and yield for desired products.

Finally, a novel approach involving self-assembled monolayers of 2-pyridinethiol nanoparticles @Pt-Au was explored, showcasing a novel electrocatalyst for the reduction of CO₂ to methanol [11]. This study illustrates the effectiveness of hybrid approaches, where synergy between the different components of the self-assembled structure improves catalytic performance, leading to improved reaction rates and product selectivity.

3. Case Studies

Four representative case studies are analyzed in this section that highlight the application of self-assembled nanomaterials in CO₂RR. Each case study illustrates the design and assembly methods of different catalysts, demonstrating how different strategies affect catalytic performance.

3.1. ZnO nanowire experiment

The self-assembly of nanomaterials plays a pivotal role in enhancing the catalytic performance of CO₂ electroreduction. ZnO nanowires were fabricated using a nanoparticle self-assembly method to enhance the surface and active sites for the electro-reduction of CO₂ to CO. The main principle of this experiment lies in the role of ZnO as a selective catalyst for CO production, and the use of nanoparticle self-assembly increases catalytic efficiency by providing more reaction sites and improving charge transport.

Researchers synthesized ZnO nanosheets via a self-assembly process, where the ZnO nanoparticles were fabricated and then allowed to assemble into nanosheet structures under controlled conditions. The self-assembly process took a bottom-up approach, ensuring uniformity of the surface morphology of the structure. This technique allowed the creation of nanosheets with a high density of active sites for the adsorption and reduction of CO₂. The electrochemical performance of these nanosheets was tested using cyclic voltammetry and chronoamperometry in a CO₂-saturated electrolyte.

ZnO nanosheets showed a significantly improved reduction of CO₂ to CO compared to unassembled ZnO particles. The catalytic current density was higher and the Faradaic efficiency for

CO production reached more than 85%. The results demonstrated that self-assembly of ZnO nanoparticles into nanosheets provided greater surface area and facilitated charge transfer, which improved reaction kinetics and selectivity for CO.

3.2. Experience with the covalent organic framework of anthraquinone (COF)

Self-assembly in covalent organic frameworks (COFs) has emerged as a promising strategy to enhance CO₂ reduction due to the unique structural and catalytic properties of these materials. The use of anthraquinone-based covalent organic frameworks (COFs) that self-assemble into one-dimensional (1D) superstructures was investigated in a study. The principle here focuses on the ability of the organic frame to facilitate electron transfer and its large surface area, which improves the electroreduction of CO₂ to methane (CH₄).

COFs were synthesized via a solvothermal process, allowing self-assembly of anthraquinone-based monomers in a 1D superstructure. Anthraquinone units acted as active sites for CO₂ binding and reduction, while the structure of the organic framework ensured proper transport of electrons through the catalyst. The electrochemical tests were carried out in a gas-tight type H cell, with CO₂ fed continuously into the cathode compartment. Chronoamperometry and gas chromatography were used to monitor and quantify CH₄ production.

The COF superstructures of anthraquinone demonstrated high selectivity for methane, with a faradic efficiency of 92% for CH₄ at an applied potential of -0.7 V vs. rhe. The self-assembled COFs exhibited improved stability and catalytic performance compared to unorganized COF systems. The results highlight the potential of organic materials in improving the efficiency and selectivity of CO₂ electroreduction.

3.3. Experience with cuprous coordination polymers

The self-assembly of coordination polymers offers a powerful approach to controlling molecular architecture for selective CO₂ electroreduction. A self-assembled cuprous coordination polymer was developed to catalyze the electrochemical reduction of CO₂ to C₂ products, such as ethylene (C₂H₄). Self-assembly of the coordination polymer created a structured environment that enhanced catalytic selectivity for C₂ products, highlighting the role of molecular architecture in controlling reactions.

Researchers synthesized the cuprous coordination polymer through a controlled self-assembly process, where cuprous ions (Cu⁺) were bound by organic ligands into a polymeric structure. This process was conducted under mild solvothermal conditions, promoting the formation of a stable self-assembled framework. The polymer was then deposited on a conductive substrate, and the electroreduction of CO₂ was carried out in an aqueous solution. The analysis of the products was carried out by gas chromatography, with an emphasis on the formation of C₂ products such as ethylene and ethanol.

The self-assembled cuprous coordination polymer exhibited high selectivity for C₂ products, achieving a faradic efficiency of 72% for ethylene production at -1.0 V vs. rhe. The structured polymer matrix was found to promote the C–C coupling reactions necessary for the formation of C₂ products. The results suggest that the self-assembly approach was essential to adjust the catalytic properties of the polymer, leading to a more efficient and selective electroreduction process.

3.4. Hybrid nanostructure experiment

Hybrid nanostructures formed through self-assembly enable synergistic effects that significantly enhance catalytic properties for CO₂ reduction. The self-assembly of 2-pyridinethiol nanoparticles @Pt-Au was explored as a novel hybrid nanostructure for the reduction of CO₂ to methanol (CH₃OH).

The principle behind this experiment was to take advantage of the synergistic effects of Pt and Au in improving catalytic activity for CO₂ reduction and improving product selectivity.

In this study, Pt and Au nanoparticles were codeposited and self-assembled in monolayers on an electrode surface using a 2-pyridinethiol linker. The assembly process ensured the formation of a uniform and hybrid catalyst layer. Catalytic performance was evaluated using linear scanning voltammetry and controlled potential electrolysis in a CO₂-saturated solution. Methanol production was quantified by high-performance liquid chromatography (HPLC).

The Pt-Au hybrid nanostructure demonstrated improved CO₂ reduction efficiency, with 68% faradic efficiency for methanol production. The self-assembled monolayer ensured optimal interaction between the catalyst and CO₂, improving both reaction rates and product selectivity. The study highlighted how the hybrid approach, combining different metal nanoparticles in a self-assembled structure, could lead to superior catalytic properties compared to monometallic systems.

4. Discussion

The integration of self-assembly techniques in electrochemical CO₂ reduction (CO₂RR) has revealed significant advances in the design and functionality of nanocatalysts. Using methods such as solvent evaporation, matrix-assisted techniques, and DNA-directed assembly, the researchers were able to exert precise control over the morphology, composition, and size of the catalyst, which are essential for optimizing catalytic efficiency and selectivity. This review demonstrated that self-assembled nanostructures offer several advantages over conventional catalysts, such as increased surface area, improved active sites, and better charge transport properties. For example, the use of solvent evaporation in the creation of multidimensional nanostructures allows for greater crystallinity and uniformity, leading to more consistent catalytic performance. Similarly, template-assisted assembly provides structural direction, which enhances the controlled release of nanocatalysts and optimizes selectivity to desired CO₂RR products.

Experimental case studies confirm these results. In the zinc oxide nanosheets experiment, self-assembly of the ZnO nanoparticles led to a higher density of reactive sites, significantly improving the CO₂ to CO reduction efficiency. Similarly, the copper coordination polymer experiment demonstrated how self-assembled structures could improve selectivity for C₂ products such as ethylene. These examples confirm that self-assembly is not simply a method of organizing materials, but a strategic approach to designing catalysts with superior electrochemical properties. As the field progresses, the ability to refine these assembly processes to optimize catalytic efficiency for specific CO₂RR pathways will play a critical role in addressing climate change by improving carbon capture and conversion technologies.

5. Conclusion

This review explored the significant impact of self-assembled nanomaterials on the field of electrochemical CO₂ reduction, with particular attention to diverse various self-assembly techniques such as solvent evaporation, matrix-assisted methods and DNA-directed assembly. These approaches have led to the development of catalysts with increased surface area, improved charge transport properties, and improved structural uniformity, which have improved the efficiency and selectivity of CO₂RR. The case studies presented, including zinc oxide nanosheets, anthraquinone covalent organic frameworks, copper coordination polymers and mixed nanostructures, illustrate the various strategies that self-assembly offers for optimizing the electroreduction of CO₂ into valuable products such as CO, CH₄ and C₂ compounds such as ethylene and ethanol.

However, the review identifies several limitations. Although the reported examples show promising results, they are not comprehensive, as most studies lack large-scale experimental

validation and cover only a narrow range of materials and reaction conditions. Moreover, the majority of research has mostly concentrated on synthesis and laboratory testing, leaving little attention to the scalability of these self-assembled catalysts for industrial applications. Future studies should emphasize investigating the long-term stability and economic feasibility of these nanomaterials in real-world contexts. Additionally, there is a notable lack of real-time mechanistic studies that could elucidate the ways in which self-assembled structures impact reaction pathways during CO₂ reduction, which are conspicuously lacking.

Despite these limitations, the potential of self-assembled nanomaterials in CO₂ reduction is vast. The modularity and tunability of self-assembly offer exciting opportunities for customizing catalysts tailored to specific industrial needs. In the long term, further advances in this area could lead to breakthroughs in carbon capture and utilization technologies, which would greatly aid international efforts to reduce carbon emissions and mitigate climate change.

References

- [1] Wang M, Wang H, Wang Y, et al. *Rapid and controllable in-situ self-assembly of main-group metal nanofilms for highly efficient CO₂ electroreduction to liquid fuel in flow cells*[J]. *Nano Research*, 2024, 17(6): 5718-5725.
- [2] Li J, Chen W, Wang M, et al. *Self-Supporting Copper-Based Electrode by Electrospinning for Reduction of Carbon Dioxide to Methane*[J]. *Energy Technology*, 2021, 9(12): 2100714.
- [3] Wang G, Yang Y, Liu H, et al. *Modular Construction of a Tessellated Octahedron, its Hierarchical Spherical Aggregate Behavior, and Electrocatalytic CO₂ Reduction Activity*[J]. *Angewandte Chemie International Edition*, 2022, 61(43): e202205851.
- [4] Fan G, Corbin N, Chung M, et al. *Highly Efficient Carbon Dioxide Electroreduction via DNA-Directed Catalyst Immobilization*[J]. *JACS Au*, 2024, 4(4): 1413-1421.
- [5] Pan X, Kochovski Z, Wang YL, et al. *Poly (ionic liquid) nanovesicles via polymerization induced self-assembly and their stabilization of Cu nanoparticles for tailored CO₂ electroreduction*[J]. *Journal of Colloid and Interface Science*, 2023, 637: 408-420.
- [6] Yang Y L, Wang Y R, Gao G K, et al. *Self-assembly of single metal sites embedded covalent organic frameworks into multi-dimensional nanostructures for efficient CO₂ electroreduction*[J]. *Chinese Chemical Letters*, 2022, 33(3): 1439-1444.
- [7] Wang H, Xiao Y, Qi Y, et al. *Fabrication of ZnO nanosheets self-assembled by nanoparticles for accelerated electrocatalytic reduction of CO₂ to CO*[J]. *Fuel*, 2023, 333: 126431.
- [8] Saberi Safaei T, Mepham A, Zheng X, et al. *High-density nanosharp microstructures enable efficient CO₂ electroreduction*[J]. *Nano letters*, 2016, 16(11): 7224-7228.
- [9] Liu M, Wang Y R, Ding H M, et al. *Self-assembly of anthraquinone covalent organic frameworks as 1D superstructures for highly efficient CO₂ electroreduction to CH₄*[J]. *Science Bulletin*, 2021, 66(16): 1659-1668.
- [10] Sakamoto N, Nishimura Y F, Nonaka T, et al. *Self-assembled cuprous coordination polymer as a catalyst for CO₂ electrochemical reduction into C₂ products*[J]. *ACS Catalysis*, 2020, 10(18): 10412-10419.
- [11] Ensafi A A, Alinajafi H A, Jafari-Asl M, et al. *Self-assembled monolayer of 2-pyridinethiol@ Pt-Au nanoparticles, a new electrocatalyst for reducing of CO₂ to methanol*[J]. *Journal of Electroanalytical Chemistry*, 2017, 804: 29-35.