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Diabetes is one of the most common diseases that targets the elderly population
worldwide. Therefore, early prediction is of crucial significance for intervention treatment.
This study focuses on two models: logistic regression and fully connected layers. For the
task of predicting diabetes incidence, it compares the impact of having or not having a
feature weight strategy on the model's accuracy. The experiment was characterized by
clinical physiological indicators, and two types of models were constructed, respectively: a
logistic regression model with weights and a model with average weights. The accuracy was
evaluated through 5-fold cross-validation. The results show that due to the linear nature of
the task, the prediction accuracy of logistic regression is superior to that of the fully
connected layer. Moreover, for all model types, the weight strategy can significantly
improve the accuracy. This study provides practical references for model selection and
feature engineering in diabetes prediction and also offers a theoretical basis for the
adaptability of models and weight mechanisms in linear tasks.
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Diabetes, also known as a chronic illness, is a group of metabolic diseases due to a high level of
sugar in the blood over a long period. The risk factor and severity of diabetes can be reduced
significantly if the precise early prediction is possible [1]. Diabetes is a life-long disease because of
the high levels of sugar within the blood [2]. More than 90-95% of people worldwide are affected by
Type 2 diabetes [3]. In the research on prediction accuracy rates, the results on the PID dataset
demonstrate that a deep learning approach designs an auspicious system for the prediction of
diabetes with a prediction accuracy of 98.35%, F1 score of 98, and an MCC of 97 for five-fold
cross-validation [4]. In [5], the authors employed three different ML classifiers, such as Machine
Learning (DT), Support Vector Machine (SVM), and Naive Bayes (NB), to prognosticate the
likelihood of diabetes with maximum accuracy. They demonstrated that NB is the best-performing
model with an AUC of 0.819.

In this experiment, 1,200 clinical subjects were selected as the dataset for machine learning,
including both those with and without diabetes. Each object has detailed characteristic information,
such as glycated hemoglobin, fasting blood glucose, 2-hour postprandial blood glucose, age, and
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family history of diabetes, among others. Then, two models were selected: the logistic regression
model, representing linear models, and the fully connected layer model, representing nonlinear
models, for machine learning. For each model, the experimental group assigns weights to the feature
variables, while the control group assigns equal weights to all the feature variables. Therefore, a
total of four experiments were conducted. This study aimed to explore which model is more suitable
for clinical use in the early prediction stage of diabetes, and whether assigning weights to the feature
variables would lead to a higher accuracy rate for disease prediction. This result can more
conveniently identify people at high risk of diabetes, and avoid unnecessary, excessive examinations
and treatments for those at low risk, thereby reducing the economic burden and psychological stress
on patients.

2. Data and model research methods

2.1. Research procedure
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Figure 1. Research framework (picture credit: original)

Figure 1 shows the eesearch framework. This study focuses on feature selection and weight
configuration in early diabetes prediction. Current diabetes prediction has two limitations: a lack of
systematic comparison between logistic regression and fully connected layer models with analysis
of feature weight strategies, and insufficient research on how feature weights affect linear and non-
linear models, making it difficult to determine optimal model-weight combinations.

The research analyzed semi-structured clinical data from 1200 patients in a hospital, including 12
clinical features, such as BMI, systolic blood pressure, fasting blood glucose, and diabetes status
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labels. At the model level, it compared logistic regression with single-hidden-layer fully connected
layers, focusing on their adaptability differences in binary prediction tasks like diabetes. Regarding
weight configuration, both weighted and unweighted schemes were designed to explore their impact
on model performance.

In processing, categorical features were converted to numerical values using label encoding, and
all features underwent standardization. Logistic regression models were built using scikit-learn,
while single-hidden-layer fully connected neural networks were constructed with deep learning
frameworks, each configured in weighted and unweighted versions. Through 5-fold stratified cross-
validation, the single-hidden-layer fully connected model showed superior performance, and the
feature weight strategy effectively improved prediction accuracy for both model types.

Based on findings, policy recommendations include that medical institutions should prioritize
logistic regression combined with feature weight strategies for early diabetes prediction; future
research could explore the integration of logistic regression with single-hidden-layer fully connected
layers and introduce attention mechanisms for dynamic weight adjustment to optimize prediction in
complex clinical scenarios.

This study utilized a clinical diabetes dataset from a certain hospital, which consisted of 1200
samples. The feature values included gender, age, smoking history, diabetes family history, BMI,
systolic blood pressure, diastolic blood pressure, fasting blood glucose, 2-hour post-meal blood
glucose, glycosylated hemoglobin, lipid indicators, whether having hypertension, and whether
suffering from diabetes, totaling 12 items.

The data for this study were derived from the clinical treatment records of diabetic patients in a
certain hospital. They encompassed 12 characteristic variables, including 9 numerical and 3
categorical, and 1 target variable, indicating whether the patient has diabetes. First, select the
samples without missing values for the target variable, clearly define the two labels of "non-
diabetic" and "diabetic", and verify the sample distribution to confirm that there is no severe class
imbalance, ensuring the validity of the modeling data.

Then, for numerical variables, the Z-score standardization method was employed to convert all
numerical features into a distribution with a mean of 0 and a standard deviation of 1, eliminating the
feature scale differences caused by different units, such as blood pressure in mmHg and blood sugar
in mmol/l, and avoiding the model's excessive reliance on features with a large numerical range.

Furthermore, for categorical variables, a category encoding method is employed to convert
discrete qualitative values into continuous integers that can be recognized by the model. This
approach preserves the semantic associations of the features while enabling the conversion of
categorical data into a numerical format, providing compatible input for subsequent model training.

To explore how feature weight optimization affects diabetes prediction models, this study designed
two strategies: "differentiated weights" and "equal weights," applied respectively to logistic
regression and a fully connected layer.
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The equal-weight strategy aims to construct a baseline model without feature priorities,
eliminating differences in feature importance for unbiased initial weights. For logistic regression, Z-
score standardization is applied to all features (mean=0, standard deviation=1), ensuring equal
weights at the early training stage without feature priority bias. For fully connected neural networks,
to prevent automatic learning of feature importance, less clinically significant features are scaled up,
and high-intensity noise is added to core physiological indicators, forcing equal initial contribution
of all features in early training.

The differentiated weighting strategy, based on clinical knowledge and data-driven, assigns
higher weights to core features to enhance their predictive contribution and improve diagnostic
accuracy. For logistic regression, random forest calculates feature importance via decision tree
splitting contribution, selecting core diabetes indicators, such as fasting blood glucose, 2-hour post-
meal blood glucose, and glycosylated hemoglobin. Core features get weight coefficients of 1.5,
while non-core features get 1.0, strengthening key indicators' influence to align with clinical logic.
For fully connected networks, "autonomous weight learning" is used—input and hidden layer
weights update iteratively during training, letting the model identify important features by data
distribution. Post-training, the input layer weight matrix L2 norm quantifies feature weights, with
clinical core features contributing more and achieving data-pattern and clinical-logic consistent
differentiated allocation.

2.3. Models
2.3.1. Feature weight optimization logistic regression

This model enhances the influence of critical clinical indicators on the prediction results through
differentiated weight allocation. The determination of feature weights is accomplished through an
ensemble learning method. The predictive contribution of each feature is quantitatively evaluated
using an ensemble tree model, and then weights are allocated based on the average importance ratio
of each feature. During the prediction process, the weighted features are integrated through a linear
function, and then mapped to the probability of illness through a probability conversion mechanism,
providing a quantitative basis for clinical risk assessment.

2.3.2. Unweighted logistic regression

Unweighted logistic regression was used as the control model, employing a feature equalization
processing strategy. Its feature preprocessing process was consistent with the weighted version,
eliminating the complex weight calculation and optimization steps.

2.3.3. Feature weight optimization multi-layer perceptron model

The model is based on a deep network structure and combines feature weight optimization to
accurately capture complex clinical correlations. Its network structure consists of four fully
connected layers: the input layer has a dimension matching the total number of features, ensuring
that all preprocessed indicators can be effectively input; the hidden layers sequentially have 64, 32,
and 16 neurons, achieving deep integration of features by gradually reducing the dimension; the
output layer corresponds to a binary classification task and directly outputs the prediction results of
the two health states. The hidden layers all use the ReLU activation function, which can effectively
introduce nonlinear factors, enabling the model to learn the complex correlations between clinical
indicators, such as the combined influence of fasting blood glucose and positive family history, and
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the interaction between blood pressure and lipid indicators, etc. During the training process, the
model dynamically adjusts the network parameters through the backpropagation algorithm, while
combining feature weight optimization to further enhance the influence of key indicators on the
network decision.

2.3.4. Unweighted multi-layer perceptron model

The unweighted multi-layer perceptron model was used as a control. Its network structure was the
same as the weighted version, except that an equalization strategy was adopted in the feature
preprocessing stage to eliminate the inherent differences in the importance of the features. It
performed numerical amplification on indicators with less clinical significance and added noise
interference to key indicators such as blood glucose and glycosylated hemoglobin, forcing all
features to tend towards balance at the numerical level. This ensured that all features had the same
influence in the early stage of model training, without any additional weight adjustment mechanism.

3. Experiment on model evaluation and comparison
3.1. Experimental setup
3.1.1. 5-Fold stratified cross-validation

When the number of samples that can be utilized to train the model is significantly reduced, the
outcomes can sometimes be affected by a random selection of the (train, validation) sets [6, 7].
Moreover, the biggest advantage of using the K-Fold CV technique is that it does not care about
how the data is divided [8]. In this experiment, the data set was divided using the five-fold stratified
cross-validation method to ensure the stability and reliability of the experimental results. This
method divides the dataset into five mutually exclusive subsets. The use of randomized subsets of
data in cross-validation is a strong way to test the success rate of models used for classification in
healthcare organizations [9, 10]. Within each subset, the distribution ratio of the two types of healthy
state samples is the same as that of the original dataset, effectively avoiding experimental deviations
caused by imbalanced sample distribution. During the experiment, each subset was successively
used as the validation set, while the remaining four subsets were combined as the training set. This
process was repeated five times for training and validation. Finally, the average value of the five
validations was taken as the experimental result, which significantly reduced the random error of a
single experiment and improved the credibility of model performance evaluation, ensuring the
scientific nature of the experimental conclusion.

3.1.2. Experimental comparison design

This study designed two sets of control experiments: The first set compared the weights of the
logistic regression model, by examining the performance differences between the weighted and
unweighted versions, to verify the enhancement effect of feature weight optimization on the linear
model; the second set compared the weights of the multi-layer perceptron model, by analyzing the
performance under two different weight configurations, to investigate the impact of weight
optimization on the non-linear model. All experiments were conducted under the same hardware
environment and data preprocessing standards to ensure that the experimental variables were only
the weight configuration strategies, thereby accurately verifying the value of weight optimization

25



Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD29170

and providing a reliable experimental basis for the optimization direction of the diabetes prediction
model.

3.2. Results and analysis

Table 1. Performance metrics of different models for diabetes prediction
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Figure 2. Feature importance weights in the LR model for diabetes prediction (picture credit:
original)
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Figure 3. Feature importance weights in MLP model for diabetes prediction (picture credit: original)

Table 1 presents the performance indicators of different models in diabetes prediction, including

accuracy, precision, recall rate, F1 score, and AUC.
The evaluation is conducted by differentiating between "no diabetes" and "diabetes" samples. In
terms of overall accuracy rate, the logistic regression model with feature weights is the best,
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achieving 98.90%. The fully connected layer model with weights comes second, with an accuracy of
98.38%. The model without weights shows a significant decline in performance, with the
unweighted logistic regression reaching 95.60% and the unweighted fully connected layer only
93.16%. This highlights the crucial role that feature weights play in the model's performance.
Similarly, for both the healthy and ill patients, the calculated precision, recall, F1, and AUC, as well
as the weighted accuracy rates, are all higher than the average weights. The accuracy rate of the
logistic regression model is higher than that of the fully connected layer model.

When assigning weights to the feature vectors in the logistic regression model and the fully
connected layer model, the results showed that in Figure 2, the logistic regression model, age
accounted for the highest proportion, exceeding 50%, followed by 2h postprandial glucose,
accounting for approximately 9%, and finally marital status, which was about 7%. The results of the
fully connected layer model in Figure 3 show that the weight of HbAlc (glycated hemoglobin) is the
highest at 11.15%, followed by 2h postprandial glucose at 9.66%, and fasting glucose at 8.55%.

Overall, the logistic regression model with feature weights achieves the best comprehensive
performance in the diabetes prediction task. The introduction of feature weights is of great
significance in improving the classification accuracy of the model and reducing false positives and
false negatives. Blood glucose concentration, glycated hemoglobin, and age are all important
indicators for assessing whether someone has diabetes.

From the results of diabetes prediction accuracy, the weighted logistic regression performed the best,
followed by the weighted fully connected layer, and the unweighted logistic regression came next.
The unweighted fully connected layer had the lowest accuracy rate. The accuracy of the linear
model (logistic regression) is superior to that of the non-linear model (fully connected layer). The
main reason for this is not that the linear model is inherently "better", but rather the difference in the
adaptability of the current task scenario to the model. In diabetes prediction, the core weight features
have a more direct and quantifiable linear relationship with the disease status, and logistic regression
combined with weights can accurately capture such relationships. Although the fully connected layer
can learn complex nonlinear relationships, in this task, there is no strong nonlinear relationship to be
explored. As a result, the complexity of the network increases the difficulty of weight utilization,
leading to performance not meeting expectations. Therefore, feature weights significantly enhance
the model's performance, and the adaptability of the model to the task's feature correlation pattern
has a greater impact on the prediction effect than the model's linear or non-linear attributes. This
also indicates that for clinical diabetes screening, a weighted logistic regression model can be
prioritized, taking into account both accuracy and interpretability; subsequently, the weight learning
mechanism of the fully connected layer can be optimized, or more extended features that require
non-linear modeling can be combined to fully leverage its non-linear advantages.

[1] Hasan, M. K., Alam, M. A., Das, D., Hossain, E., & Hasan, M. (2020). Diabetes prediction using ensembling of
different machine learning classifiers. IEEE Access, 8, 76516-76531.

[2] Bellazzi, R., & Abu-Hanna, A. (2009). Data mining technologies for blood glucose and diabetes management.
Journal of diabetes science and technology, 3(3), 603-612.

[3] Panwar, M., Acharyya, A., Shafik, R. A., & Biswas, D. (2016, December). K-nearest neighbor based methodology
for accurate diagnosis of diabetes mellitus. In 2016 sixth international symposium on embedded computing and
system design (ISED) (pp. 132-136). IEEE.

27



(9]

Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD29170

Ayon, S. 1., & Islam, M. M. (2019). Diabetes prediction: a deep learning approach. International Journal of
Information Engineering and Electronic Business, 10(2), 21.

Sisodia, D., & Sisodia, D. S. (2018). Prediction of diabetes using classification algorithms. Procedia computer
science, 132, 1578-1585.

Varma, S., & Simon, R. (2006). Bias in error estimation when using cross-validation for model selection. BMC
bioinformatics, 7(1), 91.

Prusty, S., Patnaik, S., & Dash, S. K. (2022). SKCV: Stratified K-fold cross-validation on ML classifiers for
predicting cervical cancer. Frontiers in Nanotechnology, 4, 972421.

Bhatt, A. R., Ganatra, A., & Kotecha, K. (2021). Cervical cancer detection in pap smear whole slide images using
convnet with transfer learning and progressive resizing. Peer] Computer Science, 7, ¢348.

Marcot, B. G., & Hanea, A. M. (2021). What is an optimal value of k in k-fold cross-validation in discrete Bayesian
network analysis?. Computational Statistics, 36(3), 2009-2031.

[10] Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to

deep learning in healthcare. Nature medicine, 25(1), 24-29.

28



