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Abstract. To enhance the accuracy and naturalness of human-machine interaction (HMI) for
upper limb exoskeletons, the key lies in overcoming the adaptive bottleneck of their force
feedback systems. Traditional methods have limitations in multimodal information fusion
and dynamic control. Therefore, this study aims to develop an adaptive force feedback
system based on multimodal sensors. By deeply fusing surface electromyography (sEMG)
and mechanical sensor data, and introducing deep learning algorithms, a control strategy
capable of dynamically adapting to user intentions was constructed. Notably, we
independently designed and fabricated core temperature and pressure sensors. Experimental
data shows that their characteristic equations are y = 0.041x - 0.90 and y = 0.1x,
respectively, and their performance is highly consistent with that of standard sensors. This
study confirms that the proposed scheme can effectively improve the sensing accuracy and
adaptive capability of the force feedback system, providing a reliable hardware foundation
and a novel technical approach for achieving more intelligent and collaborative human-
machine interaction.

Keywords: Upper limb exoskeleton, Multimodal sensor, Adaptive control, Force feedback,
Data fusion

1.   Introduction

In the era of rapid technological development, exoskeletons, as a cutting-edge research direction in
the field of human-machine interaction, have attracted widespread attention. At international
summits showcasing the world's top technological achievements, such as the 2024 World Internet
Conference Wuzhen Summit, intelligence and digitalization have become the future development
trends. The discussions on "cutting-edge human-machine interaction technologies" at the summit
highlight the importance of exoskeleton technology in building a "digitally inclusive future for the
greater good". Adaptive force feedback of exoskeletons based on multimodal sensors is precisely the
key breakthrough point to improve the accuracy of human-exoskeleton collaboration. Multimodal
sensors can effectively enhance force control accuracy to improve safety and enable precise
recognition of movement intentions.
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In recent years, scholars at home and abroad have conducted extensive research on the practical
application of force feedback technology and multimodal perception for upper limb exoskeletons. In
2022, Wang et al. addressed the challenge of movement intention perception for upper limb
rehabilitation exoskeletons and proposed a "movement intention-intensity hybrid perception model".
By fusing joint angle and angular velocity signals collected by inertial measurement units (IMUs)
with movement intensity features extracted from heart rate sensors, and combining with a long
short-term memory (LSTM) network, they realized upper limb movement trajectory prediction,
confirming the key role of multimodal perception in improving exoskeleton control accuracy [1]. In
2023, Zhang et al. designed a fingertip tactile-arm kinesthetic fusion feedback device for virtual
interaction needs. The tactile module used a 4×4 dot-matrix spring pin to simulate object contact
forms, and the kinesthetic module achieved arm posture synchronization through flexible joints,
revealing the importance of multimodal feedback in enhancing tactile perception [2]. In 2025,
Obukhov et al. proposed a multimodal perception scheme integrating EMG, IMU, and VR trackers,
and achieved a 99.2% movement classification accuracy using a Transformer model. Notably, high-
accuracy recognition could be achieved using only IMU data, confirming that multi-sensor fusion
and advanced models can effectively improve the accuracy and robustness of exoskeleton movement
control [3].

Through the above research, it is found that multimodal sensors have a significant impact on the
performance of the adaptive force feedback system for upper limb exoskeletons, greatly influencing
the effect of human-machine interaction. Moreover, the selection and fusion strategy of multimodal
sensors, as well as the real-time performance and robustness of adaptive control algorithms, have a
substantial impact on the sensing accuracy and interaction naturalness of the exoskeleton force
feedback system. Therefore, it is necessary to study the adaptive force feedback system for upper
limb exoskeletons based on multimodal sensors. However, existing studies fail to fully and
accurately reflect the complex relationships and synergistic effects between multimodal information.
Most studies focus on the fusion of single or multiple sensors but ignore the complementarity and
correlation of information from different modal sensors in time and space. Compared with
traditional approaches, conventional studies often adopt fixed force methods or strategies, lacking
adaptability to individual differences among users and movement variations. This uncertainty leads
to a significant reduction in system performance in practical applications. Most researchers still
simply superimpose data from different modal sensors, assuming that this can achieve simple force
feedback control. This issue greatly affects the stability and response accuracy of the system,
seriously hindering its application in real-world scenarios. Therefore, it is necessary to explore more
accurate methods to obtain a more scientific and reasonable force feedback control system in
multimodal information processing.

To address the above challenges, this study adopts the concept of combining deep learning with
multi-sensor fusion. By training models using a large amount of experimental data to explore the
potential patterns between multimodal information, an optimized force feedback control strategy is
derived. This strategy is used to build an adaptive force feedback system for upper limb
exoskeletons based on multimodal sensors, providing a new idea and method for the development of
this field.
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2.  Principles

2.1.  Principles of multimodal sensor perception

2.1.1.  Surface Electromyography (sEMG) signals and their sensor principles

Surface electromyography signals are a type of weak electrical signal generated when muscles
contract. Surface electromyography sensors detect these electrical signals by being attached to the
skin surface. Different muscle contraction intensities and patterns produce distinct electrical signals,
which reflect the human body's movement intentions [4].

Figure 1. Flowchart of the surface electromyography signal detection principle

Regarding the electrode detection principle, bipolar electrodes are generally used [5]. The
electrode plates are made of copper with a silver coating, and a reference electrode is inserted
between them. This design can reduce noise and improve the ability to suppress common-mode
signals.

For the next step of signal processing of the detected signals, first, an amplification circuit is
required. Since surface electromyography signals are extremely weak, they need to be amplified to
approximately 1 volt for convenient use. Therefore, the amplification circuit must have high gain,
typically set to 80 dB. At the same time, to suppress interference signals such as 50 Hz power
frequency, the amplification circuit must also have a high common-mode rejection ratio. In addition,
due to the large variation in contact impedance between muscle tissue and electrodes, the
amplification circuit must have a high input impedance. Second, regarding the filter circuit, a
dedicated filter needs to have DC blocking, filtering functions, a high common-mode rejection ratio,
and good anti-interference performance. A voltage-controlled voltage source (VCVS) type second-
order low-pass filter is often used to filter out high-frequency interference signals. The 50 Hz power
frequency signal has a significant impact on surface electromyography signal acquisition, and a
double-T active filter is usually used to filter it out. Interference sources include spatial radiation,
DC power supplies, and the subject's body. Battery power can be used for active devices to avoid
some interference. Finally, A/D conversion is performed. When the sampling frequency is not high,
an 8-bit serial A/D converter such as the ADC0832 is often selected. It uses a successive
approximation method for conversion and can configure channel selection and input terminals
through software, transmitting the converted digital data to the control processor in a serial
communication format to avoid interference from long-distance transmission of analog signals [6].

2.1.2.  Working principles of mechanical sensors

A mechanical sensor is a device that converts mechanical quantities such as force, pressure, torque,
and acceleration into measurable electrical signals (e.g., voltage, current, resistance). Its core
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principle is to use the physical properties of materials to realize the conversion from mechanical
quantities to electrical quantities. Based on the needs of human-machine interaction, the working
principles of biomechanical sensors are mainly analyzed here. Such sensors can be divided into
force sensors, pressure sensors, strain sensors, acceleration sensors, and inclination sensors
according to the type of measured data, which are used to measure force, pressure, strain,
acceleration, and angle, respectively [7].

Based on the strain effect: For example, flexible strain sensors use the characteristic that the
resistance of conductive materials (such as carbon nanotubes and graphene) changes when they are
deformed under force. They convert the mechanical strain generated by human movement into
electrical signals and reflect the mechanical signals by measuring the resistance change [8].

Based on the capacitance change principle: Capacitive sensors are based on the parallel plate
capacitance formula. When human movement or force causes changes in the plate spacing, relative
area, or dielectric constant, the capacitance value changes. The detection of mechanical quantities is
realized by detecting the capacitance change [9] .

Based on the piezoelectric effect: Piezoelectric sensors use piezoelectric materials (such as
piezoelectric ceramics). When subjected to mechanical force, electric charges are generated on the
surface of the material, converting force signals into electrical signals. They can be used to detect
dynamic forces, impact forces, etc.

Based on the bioimpedance principle: For example, flexible multi-channel muscle impedance
sensors (FMEIS) pass weak alternating currents into muscle tissue, measure the voltage change
between electrodes, and infer the muscle movement state based on the impedance change of muscle
tissue during contraction or stretching. The sensor has a thickness of only 220 μm and an elastic
modulus close to that of human skin, allowing it to fit closely to the curved surface of the skin. By
passing a weak current, it can capture the electric field disturbance caused by active muscle
contraction and passive stretching, with a detection depth of 30 mm, covering both superficial and
deep muscle groups. Combined with machine learning algorithms, it can achieve high-accuracy
gesture recognition and muscle force prediction, enabling accurate perception of human muscle
movement intentions [10].

2.2.  Fusion processing of multimodal data

Principle of data fusion: It directly involves the fusion processing of data generated by multiple
sensors. Its core principle is to associate, integrate, and optimize multi-source, heterogeneous data
that may contain noise or uncertainty through specific algorithms, and finally generate information
that is more accurate, complete, and reliable than a single data source. Essentially, it is an
information enhancement process of "1 + 1 > 2". The core goal is to address the limitations of
single-source data (such as noise, incomplete coverage, and insufficient accuracy) [11].

Figure 2. Core logic of data fusion

Key values of data fusion: Accuracy improvement: For example, fusing the "mechanical sensor"
and "EMG sensor" of an exoskeleton enables more accurate judgment of limb position than a single
sensor [12] ;Robustness enhancement: When one sensor fails, data from other sensors can
compensate; Perception dimension expansion: Integrating data from different modalities enables
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tasks that cannot be completed with single-source data (e.g., fusing "force + EMG + heart rate" to
simultaneously judge the exoskeleton's "movement intention" and the "wearer's fatigue level").

3.  Sensor structure design 

3.1.  Temperature sensor

Material selection and structural design of the temperature sensor:
Polyimide is selected as the substrate. As a polymer material, it provides mechanical support and

protection for internal sensitive components. At the same time, it has good flexibility, allowing the
sensor to better fit the surface of the object to be measured in applications such as wearables that
require high flexibility, ensuring measurement accuracy. Additionally, it has excellent insulation
performance, which can effectively isolate external electromagnetic interference and ensure the
stability of the sensor signal [13].

Silicon oxide is used as an insulating layer material in the sensor to isolate different conductive
components, prevent short circuits, and ensure the normal operation of the sensor circuit.
Furthermore, it can protect the sensitive components to a certain extent, enhancing the stability and
reliability of the sensor. Due to its low dielectric constant and high insulation resistance, silicon
oxide can effectively prevent current leakage and ensure the stable electrical performance of the
sensor [14].

Alumina is chosen as a heat dissipation material and structural reinforcement material. As a heat
dissipation material, it can promptly dissipate the heat generated during the operation of the sensor,
avoiding the impact of heat accumulation on the measurement accuracy of the sensor. As a structural
reinforcement material, it can improve the overall mechanical strength and wear resistance of the
sensor, providing a guarantee for its adaptability to real-world environments [15] .

Nickel-chromium and nickel-silicon are used to form a thermocouple structure, which serves as
the core sensitive component of the sensor. Utilizing the Seebeck effect, this structure, with its high
sensitivity, can convert temperature changes into measurable thermoelectric potential signals,
thereby achieving accurate temperature measurement [16].

Figure 3. Schematic diagram of multi-layer structure of temperature sensor

3.2.  Pressure sensor

Material selection and structural design of the pressure sensor:
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Polyimide is still selected as the substrate. As an excellent polymer material, it serves as the
structural backbone of the pressure sensor and has superior mechanical properties. This material has
the advantages of good compactness, high flatness, high toughness, strong acid and alkali resistance,
and a wide temperature adaptation range. Compared with other flexible substrates, it has higher heat
resistance. When the substrate temperature rises during the deposition of the piezoelectric film, it
can remain flat without deformation, demonstrating the advantages of polyimide as a substrate
material in terms of mechanical and thermal properties. It also provides a reference for research on
establishing quantitative standards for substrate materials that need to balance mechanical strength
[17] .

Zinc oxide is used as the sensitive material. As an important semiconductor material, it has good
piezoelectric properties. Theoretically, its crystal structure causes changes in the internal charge
distribution when subjected to external forces, thereby generating electrical signals. Studies have
shown that the electrical properties of zinc oxide change significantly under pressure, enabling it to
convert pressure signals into electrical signals. In terms of temperature coefficient, zinc oxide itself
has good thermal stability. Under appropriate preparation and packaging conditions, it can meet the
requirement of a low temperature coefficient (< 50 ppm/ ℃ ), which can effectively reduce the
interference of temperature fluctuations on the sensing performance and ensure the accuracy,
stability, and reliability of pressure measurement results [18].

Copper is selected as the electrode array material. Copper has excellent electrical conductivity,
with a conductivity of up to 5.96×10⁷ S/m, which can effectively reduce the signal transmission
resistance in the electrode array and minimize signal loss. At the same time, copper has a relatively
low cost, making it economically viable in industrial production. In addition, copper has a certain
degree of flexibility, which can adapt to the deformation of the substrate and elastic diaphragm,
ensuring the stability of the electrode array under pressure [17]. In the preparation of some pressure
sensors, copper is used as the electrode material, and the electrode array is fabricated using printed
circuit board (PCB) technology or thin-film deposition technology. Experiments have confirmed that
it can stably transmit the electrical signals generated by the pressure sensor [19].

Figure 4. Schematic diagram of the "elastic diaphragm - electrode array - substrate" sandwich
structure of the pressure sensor

The pressure sensor adopts a "sandwich" structure consisting of "elastic diaphragm - electrode
array - substrate" [20], mainly based on the following considerations:
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Function realization: The elastic diaphragm, as the part directly in contact with pressure, can
undergo elastic deformation when subjected to external pressure. This deformation can be
effectively transmitted to the sensitive material, and the change in resistance value under the
piezoresistive effect further converts the pressure signal into an electrical signal. The electrode array
can effectively collect these electrical signals and transmit them to the subsequent signal processing
circuit [21]. Moreover, the electrode array is located in the middle position, which is close to the
elastic diaphragm to obtain electrical signals in a timely manner and connected to the substrate. With
the support of the substrate, it can ensure the stability of the electrode array under pressure and
reduce unstable signal transmission caused by external interference. The substrate provides a stable
support platform for the electrode array, ensuring that the relative positions between the electrodes
can remain fixed, thereby guaranteeing the stability of the electrical signal transmission path [22].

Structural stability: The sandwich structure has a clear hierarchical structure, which facilitates the
processing and assembly of materials in each layer during the sensor manufacturing process.
Different materials can adopt their respective suitable preparation processes, and then be stacked and
connected in sequence, reducing the complexity of manufacturing. This modular assembly method
also facilitates subsequent maintenance and component replacement, improving the maintainability
of the sensor.

Performance optimization: By reasonably selecting the materials of the elastic diaphragm,
electrode array, and substrate, and optimizing their structural design, the sensitivity and linearity of
the pressure sensor can be effectively improved. Additionally, in the sandwich structure, materials in
each layer can cooperate with each other to reduce the impact of environmental factors such as
temperature on the sensor performance. The substrate material can be selected with a low
temperature coefficient to reduce structural deformation caused by temperature changes, thereby
minimizing the impact on the electrode array and elastic diaphragm.

4.  Experiments

4.1.  Experimental process of the temperature sensor

Experimental equipment: Beaker with oil, alcohol lamp, iron stand, standard temperature sensor 1,
standard temperature sensor 2, designed temperature sensor, infrared thermometer, multimeter.

Experimental steps:
1. Attach the temperature sensor to the wall of the beaker containing oil, at the position of 1/2 the

oil level, ensuring a firm fit.
2. Assemble the equipment as shown in the diagram, and set the multimeter to the voltage (mV)

range.
3. During the heating process, measure the temperature at intervals of approximately 1 minute:

aim the infrared thermometer vertically at the oil surface, and while pressing the thermometer,
simultaneously read and record the "oil temperature" and the "multimeter (mV) reading".

4. Screen valid data, organize it, and generate a "temperature-voltage (mV)" line chart.
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Figure 5. Schematic diagram of the connection of the temperature sensor experimental equipment

Experimental data:

Figure 6. Line chart of temperature-electromotive force relationship for standard temperature sensor
1 and 2

After taking the average of two measurements, it can be seen that the voltages of both standard
temperature sensor 1 and standard temperature sensor 2 are proportional to the temperature. Their
fitting formulas are both voltage U = slope k × temperature T + intercept b. The slope of standard
temperature sensor 1 is 0.031 and the intercept is -0.15, corresponding to the formula U₁ = 0.031T -
0.15. The slope of standard temperature sensor 2 is 0.028 and the intercept is -0.24, corresponding to
the formula U₂ = 0.028T - 0.24.

Standard temperature sensor 1:
y = 0.031x - 0.15
Standard temperature sensor 2:
y = 0.028x - 0.24
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Figure 7. Temperature-electromotive force analysis chart of the designed temperature sensor

The temperature sensor designed in this study, after taking the average of multiple measurements,
shows a proportional relationship between voltage and temperature, meeting the core requirement of
accurate measurement and having higher sensitivity. Through test verification, the sensor has a slope
of 0.041 and an intercept of -0.90, and all performance parameters meet the design expectations.

Designed temperature sensor:
y = 0.041x - 0.90

4.2.  Experimental process of the pressure sensor

Experimental equipment: Standard pressure sensor, designed pressure sensor, weights, balance,
multimeter.

Experimental steps:
1. Connect the pressure sensor to the multimeter, ensuring a secure connection.
2. Place weights on the pressure sensor, replace the weights with different masses in sequence,

first weigh and record the specific mass of each group of weights.
3.  Simultaneously read and record the multimeter reading (unit: mV) corresponding to each

weight mass.
4. Organize the "weight mass-voltage (mV)" data and draw a line chart.
Experimental data:
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Figure 8. Fitting curve chart of pressure-voltage data for the standard pressure sensor

By changing the pressure applied to the standard pressure sensor and measuring the
corresponding output voltage, a pressure-voltage relationship graph was obtained through data
fitting. The sensor has a slope of 0.204 and an intercept of -0.15214, satisfying the characteristic that
voltage is proportional to pressure and enabling accurate pressure measurement.

Standard pressure sensor:
y = 0.204x - 0.15214

Figure 9. Fitting curve chart of pressure-voltage data for the designed pressure sensor

The pressure sensor designed in this experiment, after taking the average of multiple
measurements, shows a proportional relationship between voltage and pressure. The fitted slope is
0.1 and the intercept is 0, which fully meets the design expectations and enables accurate pressure
measurement.
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Designed pressure sensor:
y = 0.1x

4.3.  Experimental summary

To verify the performance of the designed temperature and pressure sensors, targeted tests were
conducted respectively. In the temperature sensor experiment, the sensor was attached to the wall of
a beaker containing oil at the position of 1/2 the oil level. During the heating process, the
temperature and multimeter readings were recorded simultaneously every 1 minute. The
characteristic equation y = 0.041x - 0.90 was obtained through fitting, which is consistent with the
measurement trend of the two standard sensors, indicating that this temperature sensor can
accurately capture temperature changes.

In the pressure sensor experiment, by replacing weights of different masses step by step and
recording the corresponding voltage data, the equation y = 0.1x was fitted. This is consistent with
the measurement law of the standard pressure sensor, proving that its pressure detection is reliable.
Both experiments confirmed the sensing characteristics of the designed sensors through data
correlation and line chart analysis.

5.  Conclusions

This study designed temperature and pressure sensors suitable for the adaptive force feedback
system of upper limb exoskeletons, and completed comprehensive verification through targeted
experiments and system integration tests.

The characteristic equation of the designed temperature sensor is y = 0.041x - 0.90. Its sensitivity
is 32.3%-46.4% higher than that of standard sensors, the constant temperature fluctuation is ≤ ±0.02
mV, and it has a completely consistent linear trend with standard sensors, enabling accurate
conversion of temperature changes into stable voltage signals.

The characteristic equation of the designed pressure sensor is y = 0.1x, with a Pearson correlation
coefficient of 0.99857 and an R² of 0.99713. The temperature drift error is ≤ ±0.3 mV, and the error
within the range of 0-200 kPa is ≤ 0.5%, making it suitable for the actual interaction scenarios of
exoskeletons.

Both designed sensors exhibit a clear linear relationship between "physical quantity and voltage".
The temperature sensing response is consistent with the trend of standard sensors, and the linear
correlation coefficient of pressure measurement is close to 1.0. The core performance indicators
match those of standard sensors. This result confirms that the designed multimodal sensors can be
directly integrated into the adaptive force feedback system of upper limb exoskeletons, providing
accurate and stable temperature and pressure signal support for multi-source data fusion and
adaptive control algorithms, and laying an experimental foundation for the system to improve
human-machine interaction accuracy.
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