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Abstract. Artificial intelligence (AI) shows great potential for improving surgical efficiency,
precision, and autonomy in surgical robotic systems. However, the robustness of deep learning-
based algorithms remains a critical challenge as the surgical environments shows much vari-
ance in real application. Most deep learning-based segmentation models, though highly ef-
fective on benchmarking datasets, often fail during unforeseen non-adversarial corruptions
such as occlusions, bleeding, or low brightness. In this study, we introduce a domain-specific
augmentation strategy to enhance model robustness against possible surgical corruptions that
is not seen in the training data. Our method simulates key corruptions, including blood simu-
lation, brightness adjustment, and contrast adjustment. Based on the SegSTRONG-C bench-
mark, we evaluate a baseline U-Net model on a binary surgical tool segmentation task. While
the baseline shows strong performance on clean images, its accuracy drops substantially on
the corrupted test data. Incorporating our proposed augmentations significantly improves per-
formance on corrupted inputs while preserving accuracy on the clean domain. These findings
underscore the importance of specific augmentation for model’s robustness and demonstrate a
practical pathway toward more reliable and generalizable segmentation models for real-world
surgical robotics applications.

Keywords: intelligent surgical robotics, surgical AI, deep learning, model robustness, surgical
tool segmentation.

1. Introduction

Surgical robot is taking more important role in healthcare, due to their unique advantages, including
high precision, better range of motion, minimal invasion of the human body, and possibility of re-
mote operation. Meanwhile artificial intelligence (AI) algorithms also presents a rapid advancement.
Thus, integrating AI into surgical robotic systems has become a key area of research. This integration
aims to enhance the intelligence of robotic systems, improving surgical efficiency and success rates.
Although many image segmentation algorithms have achieved remarkable success in general com-
puter vision tasks [1–6], they often rely on large scale training data and high-quality image inputs.
However, such ideal conditions are difficult to guarantee in surgical environments due to the complex-
ity and variability of real-world operations [7, 8]. Surgical scenes may involve less reliable lighting,
occlusions, tissue deformation, and limited camera perspectives. These conditions always result in
low image quality and consistency. Furthermore, unexpected complications like smoke, bleeding, can
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happen during actual procedures but these events are rarely captured during data collection or simula-
tion, causing significant challenges to the robustness and generalization of segmentation algorithms.
As a result, designing algorithms capable of accurately identifying and localizing surgical tools under
those corrupted scenes is both essential and challenging.

The key focus of this study is to explore algorithms that enables widely applied deep learning
architectures to correctly segment surgery tools in corrupted images during inference, while only
clean data is provided during training.

While prior work has attempted to improve robustness through standard data augmentations or
synthetic datasets, such approaches did not make specific design for complications of real surgical
scenes that can be expected. In contrast, our strategy directly targets these issues by simulating spe-
cific corruptions as customized data augmentation like blood simulation, brightness adjustment, and
contrast adjustment. This enables the model to learn more realistic visual representations of surgi-
cal tools under these corruptions, offering a effective and practical solution to enhance segmentation
performance in real-world surgical applications.

To test the effectiveness of the specialized data augmentation, this work adapts the settings from
SegStrongC benchmark that holds a separate dataset to check the model’s performance in corrupted
images. For this project, we focus especially on images partly covered by blood, which is a common
complication the model will have to face during surgery. We apply the dataset from the SegSTRONG-
C[7] challenge to conduct a study on the binary surgical tool segmentation task. We report the
DICE[9] score as the quantitative metric for evaluation. We apply UNet[2] as a representative of
the baseline networks and progressively add customized data augmentation, including color jittering
and our blood occlusion simulation, into the training pipeline. The results show that while the baseline
UNet achieves strong performance on clean images, it suffers a significant drop when tested on cor-
rupted data (DICE ≈ 51%). Incorporating color jittering helps recover part of this loss, but the most
notable improvement comes from our blood-occlusion simulation, which raises the corrupted-test per-
formance above > 70% while maintaining high scores on the clean set. These findings demonstrate
that domain-specific augmentations are critical for improving robustness and reliability in surgical
tool segmentation.

2. Related Work

Image segmentation is foundational task in computer vision. In the recent years, deep learning–based
approaches achieving remarkable success. In the context of surgical robotics, accurate segmentation
of surgical tools is essential for real-time navigation, automation, and safety assurance. Methods in-
cluding architectures such as U-Net[2], DeepLab[10], and Mask R-CNN[11] have been proposed to
address this task and shown strong performance under clean, controlled benchmarking imaging con-
ditions. However, their robustness under real-world surgical conditions remains questionable due to
their limited generalization to out-of-distribution scenarios.

Recent studies have validated the gap between the performance of segmentation models under
ideal conditions and visually corrupted environments. In particular, the SegSTRONG-C[7] challenge
introduces a curated dataset of surgical tool images subjected to realistic, non-adversarial corrup-
tions such as smoke, bleeding, and low brightness. This work demonstrates that even state-of-the-art
models, if not trained on these corruptions, suffer significant performance drops, revealing a crucial
limitation in existing approaches. CaRTS addresses the robustness via a new causal model including
the robot kinematics as auxiliary data [12, 13]

While prior work has attempted to improve robustness through standard augmentations or syn-
thetic datasets [14–17], such approaches did not take the prior knowledge of the expected compli-
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cations of real surgical scenes. In contrast, our work proposes a targeted augmentation strategy that
introduces surgery-specific corruptions into clean training data. By simulating scenes such as bleed-
ing variation, we aim to proactively prepare models for the expected types of visual degradation they
will face in practice. This complements existing benchmarks by addressing robustness at the train-
ing stage and offering a practical, domain-specific solution without requiring extensive real-world
corrupted data.

3. Method

To address the issue of model overfitting to clean, ideal training data, we introduce a series of hand-
crafted data augmentations that simulate the visual challenges present in real surgical environments.
These augmentations include synthetic effects such as simulated blood stains, color diffusion, and
brightness alterations. The goal is to expose the model to more realistic conditions during training so
it can better recognize surgical tools affected by environmental factors such as blood occlusion, low
illumination, or partial visual obstruction.

3.1. Network Architecture

To perform binary segmentation of surgical tools from endoscopic video frames, we adopt a U-Net-
based architecture tailored for high-resolution spatial localization and robustness to visual variation.
The network follows a classic encoder-decoder structure with symmetric skip connections, enabling
the combination of coarse semantic information from deeper layers with fine-grained localization
cues from shallower layers.

3.1.1. Encoder (Contracting Path)

The encoder is composed of five convolutional stages that progressively reduce the spatial dimen-
sions while increasing the channel depth. Each stage consists of one layer with either ReLU[18] or
LeakyReLU[18] activations, optionally followed by Batch Normalization. The encoder blocks are
constructed using the helper function add conv stage, which allows toggling batch normalization
with the useBN flag.

– Conv1: Input image of size [B, 3, H,W ] is mapped to [B, 32, H,W ].
– Conv2 to Conv5: Each stage is followed by a 2×2 max pooling operation, halving the spatial res-

olution at each level, resulting in progressively smaller feature maps with deeper representations:
[64, H/2,W/2], [128, H/4,W/4], [256, H/8,W/8], and [512, H/16,W/16].

3.1.2. Decoder (Expanding Path)

The decoder mirrors the encoder with four upsampling stages, each consisting of a transposed convo-
lution followed by a single convolutional block. The upsampled feature maps are concatenated with
the corresponding encoder outputs via skip connections to recover spatial detail lost during downsam-
pling.

– Upsample54: Upsamples [512, H/16,W/16] to [256, H/8,W/8].
– Conv4m: Merges upsampled features with encoder output from Conv4 and outputs [256, H/8,W/8].
– Upsample43 → Conv3m: Repeats the process to [128, H/4,W/4].
– Upsample32 → Conv2m: Produces [64, H/2,W/2].
– Upsample21 → Conv1m: Restores spatial resolution to [32, H,W ].
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3.1.3. Final Prediction Layer

The final prediction is generated by a 1 × 1 convolution that reduces the channel dimension to 1,
followed by a sigmoid activation to produce a pixel-wise probability map:

Output = σ(Conv1×1(x))

where σ denotes the sigmoid function. The output is a binary mask of shape [B, 1, H,W ] indicat-
ing the predicted presence of surgical tools at each pixel.

3.1.4. Implementation Details

All convolutional layers use kernel size 3, stride 1, and padding 1 unless otherwise specified. Trans-
posed convolutions use kernel size 4, stride 2, and padding 1 to ensure proper spatial alignment during
upsampling. The network supports optional Batch Normalization for improved convergence stability.
This architecture allows the model to capture both low-level high resolution features and high-level
semantic features.

3.2. Augmentation Algorithm

In our training pipeline, we design and apply the following data augmentation techniques to enhance
the model’s robustness against unseen but expected complications in the surgical scene.

– Color Jittering: We employ the ColorJitter module from the torchvision library to introduce
random variations in brightness, contrast, saturation, and hue. This operation changes the color
distribution of the input by adjusting pixel intensities in the HSV space, effectively simulating
changes in lighting variability. By repeatedly train the model to these color–augmented image of
the same scene, the network learns to rely less on raw pixel appearance and more on structural
and textural features of the surgical tools. This increases robustness to differences in lighting and
camera settings.

(a) Original image (b) With color jittering

(c) With color jittering (d) With color jittering

Figure 1: Example of the color jittering augmentation used during training.
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– Blood Simulation: To simulate occlusion effects from surgical bleeding, we use the Python Imag-
ing Library (PIL)[19] to overlay semi–transparent, randomly placed ellipses of varying radii and
shades of red onto training images. Each ellipse is added with a alpha channel with the underly-
ing pixels using an alpha range of 0.2–0.6, producing realistic partial occlusions of tool regions.
Importantly, ellipse centers are sampled to focus on tool areas, making the augmentation targeted
rather than background–only. This compels the model to infer tool boundaries and presence even
when parts are obscured by blood or debris, thereby improving segmentation robustness under
conditions of partial visibility.

(a) Original image (b) With blood-occlusion

(c) With blood-occlusion (d) With blood-occlusion

Figure 2: Example of the blood-occlusion augmentation used during training.

– Random Brightness Adjustment: Using PIL’s brightness enhancer, we apply multiplicative scal-
ing of all pixel intensities by a factor sampled from a uniform range. This augmentation mimics
real–world variability in lighting, such as sudden dimming when the light source is blocked, or
oversaturation when the camera is too close to reflective surfaces. By training on images that vary
from underexposed to overexposed, the network develops invariance to global illumination shifts
and learns to focus on edge–based cues and structural consistency instead of absolute brightness,
which is highly unstable in surgical video.
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(a) Original image (b) With random brightness

(c) With random brightness (d) With random brightness

Figure 3: Example of the brightness augmentation used during training.

– Random Contrast Adjustment: We adjust the dynamic range of input images using PIL’s con-
trast enhancer[19], which scales pixel values relative to the mean intensity. Depending on the
sampled factor, this operation can flatten the image (low contrast) or exaggerate differences (high
contrast). Such changes replicate conditions encountered during endoscopy, such as reduced vis-
ibility due to fogging or increased sharpness from specular highlights. By learning from both
extremes, the model becomes more capable of distinguishing tool boundaries even in visually
degraded frames, increasing resilience to camera artifacts and scene–dependent contrast variation.

(a) Original image (b) With random contrast

(c) With random contrast (d) With random contrast

Figure 4: Example of the contrast augmentation used during training.
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By training the model on this artificially modified data, we improve its ability to generalize to real-
world surgical scenarios, enabling it to detect and localize tools even under adverse visual conditions,
rather than relying solely on recognition of ”clean” or idealized training samples.

4. Experiment

4.1. Dataset

To evaluate the robustness of surgical tool segmentation models under realistic visual perturbations,
we use the SegSTRONG-C dataset [7], a curated benchmark specifically designed to assess perfor-
mance under non-adversarial corruptions. The dataset is released as a sub-challenge under EndoVis
2024.

4.1.1. Base Data

The base dataset contains mock endoscopic video sequences recorded using two patient-side manip-
ulators (PSMs) from the da Vinci surgical robot, operating in a controlled environment with animal
tissue backgrounds to ensure photo-realism. For each video, trajectories were generated via man-
ual teleoperation, and binary segmentation masks of the surgical tools were created using a semi-
automated annotation pipeline. The data was collected using stereo endoscopic cameras and recorded
at 10 frames per second.

Each sequence contains 300 frames per camera (left and right), and in total, the dataset includes
17 sequences captured under different robot and camera configurations. Annotation masks were gen-
erated through a multi-step process: background subtraction was used to generate prompts for the
Segment Anything Model (SAM)[20], followed by expert manual correction of failure cases to en-
sure label accuracy.

4.1.2. Corruption Design

To simulate real-world intraoperative conditions, SegSTRONG-C[7] applies four sets of non-adversarial
corruptions to the original images. by replaying the same robotic trajectories under modified environ-
mental conditions:

– Background Change: Different types of animal tissue were used to alter background appearance.
– Smoke: Artificial fog was introduced using a fog machine to simulate surgical smoke.
– Bleeding: Fake blood was applied to obscure tool visibility, simulating occlusion due to bleeding.
– Low Brightness: The endoscopic light source is reduced.

Corruptions were applied to each test sequence by replaying the same robotic kinematics, ensur-
ing the corrupted and clean sequences are aligned. This setup enables rigorous assessment of model
robustness under a range of real-world visual corruptions. Unlike synthetic methods, generate more
realistic appearance.

4.1.3. Challenge Design

The SegSTRONG-C benchmark[7] focuses on robust generalization, where models are trained
solely on clean data and evaluated on unseen corrupted versions. This setup mimics real-world con-
ditions where annotated, corrupted data may be scarce or unavailable. The benchmark reports perfor-
mance using metrics such as the Dice coefficient, under both clean and corrupted domains.
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4.2. Evaluation Metric

To quantitatively evaluate the segmentation performance of our model, we adopt a combined loss
function during training and use the Dice coefficient as the primary evaluation metric during testing.
This choice is motivated by the fact that the Dice score is particularly well-suited for imbalanced
segmentation tasks, such as surgical tool detection, where the foreground (i.e., the tool) typically
occupies a much smaller region than the background.

4.2.1. Dice Coefficient

The Dice coefficient, also known as the F1-score for segmentation, measures the overlap between the
predicted binary mask and the ground truth mask. It is defined as:

Dice(P,G) =
2|P ∩G|
|P |+ |G|

where P denotes the predicted mask, G denotes the ground truth mask. In our implementation,
predictions are thresholded at 0.5 to obtain binary outputs, and thxe Dice score is computed per sample
and averaged across the test set.

4.2.2. Loss Function

During training, we employ a hybrid loss function that combines Binary Cross-Entropy (BCE) loss
with Dice loss:

Ltotal =
1

2
LBCE +

1

2
LDice

– Binary Cross-Entropy (BCE) Loss: Measures pixel-wise classification error between predicted
probabilities and ground truth labels, treating each pixel independently. It is defined as:

LBCE = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)]

where N is the number of pixels, yi ∈ {0, 1} is the ground truth label for pixel i, and pi ∈ (0, 1)
is the predicted probability for that pixel.

– Dice Loss: Directly optimizes the region-level overlap between the predicted and ground truth
masks. It is defined as:

LDice = 1− 2
∑

i pigi + ϵ∑
i pi +

∑
i gi + ϵ

where pi and gi represent the predicted and ground truth values at each pixel i, respectively.

This combined loss function optimize both pixel-level accuracy and region-level overlap.

4.3. Implementation Details

The U-Net model is implemented in PyTorch. Training is conducted with a batch size of 10 and a
fixed learning rate of 1 × 10−3. We apply the Adam optimizer with default momentum parameters
(β1 = 0.9, β2 = 0.999). The network is trained for 10 epochs. All input images and corresponding
masks are resized to 256×256 before training, ensuring that the spatial dimensions are divisible by 16
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to fit the downsampling and upsampling requirements. After resizing, images are converted to tensors
in the predefined normalized range [0, 1] to fit the numerical scope of the network, which stabilizes
gradient updates during optimization. The final network layer applies a 1 × 1 convolution followed
by a sigmoid activation. To obtain binary predictions aligned with the ground-truth masks, a hard
threshold of 0.5 is applied.

To ensure reproducibility, all random operations within the augmentation pipeline and network
initialization are seeded. The same preprocessing and normalization pipeline was applied consis-
tently during training and testing, with the only difference being the inclusion of domain-specific
augmentations during training.

4.4. Main Results

Vanilla baseline. The baseline U–Net model, trained without augmentations, achieved strong conver-
gence with steadily decreasing training loss from 0.1758 (epoch 0) to 0.0451 (epoch 9). Validation
loss decreased until epoch 4 (0.0815) before plateauing around 0.083 at later epochs. Under clean
test conditions, the vanilla model achieved a high DICE score (∼ 0.945). However, when evaluated
on corrupted images (e.g., with blood occlusion or color jittering), performance dropped sharply to
∼ 0.512, demonstrating limited robustness to visual disturbances.

Augmentation with brightness, contrast, color jitter, and occlusion (Train1). When training with
the full augmentation suite (brightness, contrast, color jitter, and occlusion), the model initially ex-
perienced slower convergence and higher validation loss compared to the baseline (validation: 0.214
at epoch 1, later stabilizing near 0.108). Nonetheless, robustness improved: clean test DICE score
remained strong (0.929), and corrupted performance rose markedly to ∼ 0.735, showing that targeted
occlusions and photometric changes significantly reduce brittleness to realistic disturbances.

Augmentation with color jitter and occlusion (Train2). The combination of color jitter and oc-
clusion yielded the best balance. Training loss converged smoothly from 0.1477 to 0.0480, while
validation loss decreased from 0.1010 (epoch 0) to 0.0823 (epoch 9). On evaluation, the model pre-
served a high clean DICE score (0.931) and achieved a corrupted DICE score of ∼ 0.714, slightly
below the full augmentation setup but still vastly better than the vanilla baseline. This indicates that
occlusion-based augmentation is the dominant contributor to robustness, while additional photometric
variation provides marginal benefits.

Augmentation with color jitter only (Train3). Augmented with color jittering only, the model
achieved a high clean DICE score (0.912), but the corrupted DICE score was noticeably lower (0.652),
reflecting less resilience to severe occlusions. Training and validation curves also showed higher vari-
ance, where validation loss rises to 0.213 before stabilizing near 0.117. This suggests that photometric
changes alone cannot generate similar effect that the occlusion simulation has.

Summary of findings. Overall, augmentations substantially improved robustness to surgical dis-
turbances at only minor cost to clean performance. The vanilla baseline excelled on clean data but
failed under corruptions. By contrast, models trained with occlusion-based augmentations (Train1
and Train2) generalized far better to corrupted test conditions, maintaining 70–73% performance
compared to only 51% for the baseline. These results highlight the necessity of domain-specific data
augmentations—particularly occlusion modeling—for reliable surgical tool segmentation under in-
traoperative variability.



Proceedings	of	CONF-MLA	2025	Symposium:	Intelligent	Systems	and	Automation:	AI	Models,	IoT,	and	Robotic	Algorithms
DOI:	10.54254/2755-2721/2025.LD30738

76

Table 1: Cross–comparison of U–Net models trained with different augmentation strategies. Reported
are the final validation loss (epoch 9), clean test DICE score, and corrupted test DICE score.

Training Setup Final Val. Loss Clean DICE Corrupted DICE

No Augmentation 0.083 0.945 0.512
Train1 0.108 0.929 0.735
Train2 0.082 0.931 0.714
Train3 0.117 0.912 0.652

(a) Example segmentation under the standard model without aug-
mentation

(b) Example segmentation under customized model with aug-
mentation

Figure 5: Qualitative results showing model performance under domain-specific corruptions. Our aug-
mentation improves robustness in surgical scenarios.

5. Conclusion

In this study, we propose specialized augmentation strategy to improve the robustness of surgical tool
segmentation models under realistic surgical corruptions using the SegSTRONG-C dataset[7]. Our
experiments demonstrates that while a vanilla U-Net[2] achieves strong performance on clean data,
it fails to generalize when faced with corrupted test cases under bleeding corruptions. This indicates
the vulnerability of models trained solely on idealized data. Training with our augmentation stratergy
substantially improved model robustness: corrupted test performance improved from 51% (baseline)
to over 70% with augmentation, while maintaining a high DICE score on clean inputs. Among the
strategies tested, occlusion-based augmentations proved to be the most critical for enhancing robust-
ness, with photometric transformations providing additional incremental gains. Overall, our findings
highlight that rather than relying solely on large datasets or synthetic generation, carefully designed
domain-specific augmentations can bridge the gap between clean training conditions and the expected
of real surgery. This work thus provides a practical pathway towards building more reliable AI sys-
tems for robotic surgery.
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