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In game theory, there is a fundamental challenge about maintaining cooperation
among selfish players, especially under practical noise. This study applies a noisy Iterated
Prisoner’s Dilemma (IPD) model to investigate how learning strategies perform against
classical strategies when players may receive false or misleading signals due to random
observation errors. More specifically, this study compares Deep Q-Network (DQN) agents
with basic Q-learning (QL) and several classical strategies such as Tit-for-Tat, Win-Stay-
Lose-Shift, and Grudger. The experiment results show that when noise emerges, DQN
agents not only achieve higher cumulative rewards than other strategies but also maintain
more stability, adaptability, and resilience across repeated interactions. DQN agents’ deep
neural structure helps them to capture long-term temporal dependencies, effectively
differentiate accidental defections from intentional ones, and recover cooperation after
disturbances by noise. These findings indicate that deep reinforcement learning is effective
in noisy and imperfect settings. The findings also offers valuable insights for understanding
the emergence of cooperation and for designing robust multi-agent decision-making
mechanisms in noisy or uncertain environments.
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The Prisoner’s Dilemma (PD) is one of the best-known models in game theory. It shows the basic
conflict between cooperation and defection [1]. Cooperation gives the highest total reward, but
acting selfishly often brings a better individual outcome. This will become a dilemma that appears in
many areas such as economics [2], biology [3], and social science [4]. The Iterated Prisoner’s
Dilemma (IPD) repeats the same game between the same players. Because the players remember
past rounds, they can change their choices over time. The IPD, therefore, helps researchers study
long-term decision making and the growth of cooperation [5].

Most studies of the IPD assume that players can see each other’s actions clearly and know the
outcome right away. Real situations are usually more complex. People can misread signals, make
judgment errors, or simply fail to notice what really happened [6]. In these situations, a friendly
move can look like betrayal, and also a short delay or bit of noise can change how the other side
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reacts. Once this kind of confusion appears, trust starts to fade and cooperation often breaks down,
which will also influence the long-term actions among each players in practical scenarios.

The noisy version of the IPD was introduced to capture these practical problems. It adds random
errors to what players observe so that uncertainty is built into the game itself. The question is
whether cooperation can still be learned when players cannot fully rely on what they see.

Classic strategies like Tit-for-Tat and Grim Trigger perform well without noise but rapidly fail
when noise is introduced [7]. This is because they rely on relatively precise simulation of each
other's behavior. This means that even minor errors can trigger a chain reaction of unnecessary
revenge. Traditional reinforcement learning methods face similar challenges: due to their reliance on
shallow neural networks, they cannot process longer historical information [8]. These shortcomings
highlight the need for a learning method to be able to adapt and restore stability in noisy
environments.

Three main contributions are made here. Firstly, a simulation setup is built with observation
noise. Secondly, an advanced DQN design is developed that learns strategies to resist
misinformation. Thirdly, experiments show how noise changes agents’ behavior and how different
strategies perform.

Overall, the results show that deep reinforcement learning can achieve better rewards even when
observations are sometimes fake. The findings may be useful for social dilemmas and distributed
systems, where misunderstanding and noise are normal parts of interaction.

The classical PD shows how two players must each choose between cooperating to defecting
without knowing what the other player will do. Mutual cooperation helps both sides, while mutual
defection leaves them worse off. If one defects but the other cooperates, the defector gains the most
and the cooperator gets the least. This simple game captures the conflict between acting for oneself
and acting for the common good. In a single play, defection always seems the rational choice. Yet
when the same players meet again and again, cooperation can still appear through memory, trust,
and the threat of future punishment.

Through multiple rounds of interaction, IPD offers players the opportunity to adjust their tactics
on the basis of experience. This repeat process lets players observe the value of dynamic benefits,
and then move towards balancing short-term against long-term benefits. Simple strategies such as
Tit-for-Tat show that cooperation can endure if each player reacts similarly to the other’s response.
Such an interaction pattern creates knowability of trust and tolerance over time, demonstrating that
cooperation can indeed persist over time even when competition never totally disappears.

Many theoretical methods for IPD therefore start from a perfect assumption: every player knows
perfectly how the opponent has played and gets all the payoffs he or she is supposed to get.
Interaction in the world, however, is not quite so clean. Communication breaks down, signals may
be noisy, perceptions are sometimes imperfect. Cooperation is an act that can look like a defection
and provoke unwarranted retaliation, whereas defection can look genuine and trick partners into
taking less credible punishments. These small mistakes repeated over and over can do away with the
balance that keeps cooperation flourishing.
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The noisy IPD incorporates this uncertainty by introducing stochastic errors into the observation
process. Specifically, after each action is chosen, the opponent's observed move may be flipped with
some probability €, representing observation noise. This simple modification dramatically changes
the dynamics of the game: even when both players intend to cooperate, noise can generate apparent
defections, which may spiral into sustained mutual punishment. The central challenge is therefore to
design strategies that are robust to such misperceptions, maintaining cooperation when possible,
while avoiding exploitation when noise obscures intentions.

In addition to learning-based agents, fixed strategies play a crucial role as benchmarks. These
strategies are deterministic or stochastic rules that do not adapt during play but provide interpretable
behaviors against which learning agents can be tested. A diverse set of baselines is selected to
capture different archetypes of cooperative and defecting behavior [9].

» Always Cooperate: A naive strategy that cooperates in every round, regardless of history. Serves
as an optimistic upper bound for cooperative potential, but is easily exploited by defectors.

» Always Defect: The opposite extreme, defecting in every round. Represents the individually
rational choice in one-shot games and acts as a pessimistic baseline.

» Tit-for-Tat (TFT): Begins with cooperation and then replicates the opponent's last move. Known
to sustain cooperation in noise-free IPD but highly sensitive to misperceptions under noise.
Generous variants occasionally forgive defections, making them more robust.

» Grudger: Cooperates until the opponent defects once, after which it defects forever. Extremely
effective in enforcing cooperation under perfect observation but brittle in noisy settings.

* Win-Stay-Lose-Shift (WSLS): Repeats the previous action if the payoff was a win, and changes
when it is a loss. Often considered a strong strategy in noisy environments.

* Random: Chooses cooperation or defection with equal probability. Provides a non-strategic
baseline for comparison.

Together, these strategies span the spectrum from fully cooperative to fully defecting, from rigid
to adaptive, and from forgiving to punitive. They enable a systematic evaluation of learning agents
against diverse behavioral patterns, thereby highlighting both strengths and weaknesses.

Reinforcement learning (RL) provides a natural framework for studying adaptive behavior in
repeated games. In RL, an agent learns by interacting with an environment, updating its policy to
maximize long-term cumulative reward. In the context of the noisy IPD, the environment consists of
the opponent's actions and the stochastic observation process, while the reward corresponds to the
payoff of each round. Two forms of RL are particularly relevant: tabular Q-learning and DQN.

Q-learning is a model-free algorithm that learns a value function, representing the expected return
of taking action in a state. The update rule is defined as

Q(s,a) < Q(s,a) + afr +7Q(s',a') — Q(s, a)] ey

In IPD-like games, the state is typically defined by the recent history of moves, and the update
rule balances immediate rewards with discounted future returns. Although Q-learning can converge
to effective policies in simple environments, its reliance on tabular representations limits its
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scalability. As the history length increases or noise complicates the mapping between actions and
outcomes, the state space grows exponentially, and tabular approaches become infeasible.

In contrast, DQN extends Q-learning by approximating the value function with a neural network.
Instead of storing a separate entry for each state-action pair, the network generalizes across similar
histories, enabling learning in large or continuous state spaces [10]. In the noisy IPD, this allows the
agent to process extended interaction histories and infer patterns despite imperfect observations.
Moreover, advanced DQN variants incorporate mechanisms such as replay memory, target networks,
and adaptive exploration schedules, which improve stability and efficiency.

The contrast between Q-learning and advanced DQN thus provides a meaningful axis of
comparison in the experiments: the former represents a classical baseline, while the latter embodies
a modern deep reinforcement learning approach capable of handling noise and complexity.

The performance and robustness of the proposed method were evaluated using the noisy IPD with
different agents (strategies). In this setting, two agents repeatedly interact over a lot of rounds, and
each player's observation at the opponent's previous action is influenced by stochastic observation
noise, denoted as €. This configuration emulates realistic social or multi-agent environments, where
limited information, signal corruption, and misinterpretation frequently occur.

Each match consisted of 1,000 rounds, and the final results were averaged over multiple
independent runs to minimize random variation. The payoff matrix followed the conventional IPD
setup: 5, 3, 1, 0, corresponding respectively to temptation, reward, punishment, and sucker's payoff.
Each agent aimed to maximize its cumulative payoff across the entire episode. The variation of €
from 0.0 to 0.2 allowed evaluation of how increasing observation uncertainty influences learning
dynamics and strategy adaptation.

Both DQN and QL agents shared identical reward definitions and exploration mechanisms to
ensure fairness. The DQN utilized a fully connected neural network with one hidden layer of 128
ReLU units, with a learning rate at 0.01, and a discount factor y = 0.9 unless otherwise stated. To
stabilize learning, experience replay was employed with a buffer size of 10,000 and online updates
of size 1. The Q-learning (QL) agent used the same set of hyperparameters but relied on a tabular Q-
value representation instead of a neural network. At the start of training, all Q-values were initialized
to zero, and both agents followed an e-greedy exploration rule in which & decreased linearly from
0.9 to 0.05 across episodes.

This design helps us to understand the impact of the function approximation ability of deep
neural networks on learning efficiency and stability in a noisy environment alone. By keeping all
other conditions consistent, performance differences can be attributed to the model structure itself,
rather than from parameter tuning.

During training, each learning agent played repeatedly against classical strategies chosen randomly.
Faced with such diverse strategies, learners encounter both cooperative and deceitful behaviors,
allowing adaptability to gradually emerge over time.

After every match, the DQN adjusted its parameters using stochastic gradient descent on the
temporal-difference (TD) error, whereas the Q-learning agent updated its table entries following the

25



Proceedings of CONF-SPML 2026 Symposium: The 2nd Neural Computing and Applications Workshop 2025
DOI: 10.54254/2755-2721/2026.TJ31187

Bellman rule. Two evaluation metrics were used to assess performance:

* Average Points per Game (APG): The long-term mean reward per round, representing efficiency
and stability of learned behavior [11].

* Training Stability (TS): Measured by the smoothness and convergence of loss curves across
episodes, reflecting the consistency of policy updates under noise.

These metrics collectively provided a balanced view of both quantitative performance and
qualitative behavioral tendencies.

Figure 1 presents the average points per game achieved by all strategies under moderate noise
(10%). The DQN agent achieved the highest mean payoff (2.55), outperforming QL (2.46) and all
fixed baselines. This demonstrates the effectiveness of the deep function approximator in capturing
complex state-action dependencies even under imperfect observation.
Average Points per Game: DQN/QL vs Classical Baselines
DQN 2.55
QL 2.46
Aiways Defect 219
§ Grudger 217
g Win-Stay-Lose-Shift 2.00
Tit-for-Tat 197
Random 1.50

Always Cooperate 1.24

0.0 0.5 1.0 15 2.0 25
Average Points per Game

Figure 1. Average points per game of eight strategies under 10% noise

Among classical strategies, Grudger and WSLS achieved competitive results under low noise but
exhibited rapid performance degradation as noise increased. Their reactive and deterministic nature
caused misinterpretations of accidental defections, triggering unnecessary punishment loops. The
Tit-for-Tat family, despite its elegance in ideal conditions, similarly suffered from noise sensitivity,
as a single misread action could cascade into mutual defection. Always Cooperate and Random
served as weak baselines: the former was heavily exploited by defectors, while the latter lacked any
consistent adaptation mechanism, yielding near-random payoffs.

The QL agent displayed moderate adaptability in early stages but proved fragile under higher
noise levels (noise > 10%). Its reliance on discrete state representations caused overfitting to local
observations and overreaction to spurious defections. In contrast, the DQN's neural network
captured more generalizable representations of historical interaction sequences, enabling it to infer
intent more effectively and maintain stable cooperation.

In qualitative terms, DQN agents exhibited “forgiveness” behavior: occasional tolerance toward
perceived defections, thereby preventing retaliation spirals. This behavior emerged naturally through
training, without explicit rule-based encoding. QL agents, however, lacked such flexibility, often
switching to persistent defection after a few noisy interactions.

Although the current study emphasizes mean payoff results, preliminary analysis of training
dynamics also supports this conclusion. The DQN’s TD loss consistently declined with low
variance, indicating stable convergence, whereas the QL loss oscillated heavily across episodes,
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especially in environments with higher noise. Figure 2 illustrates the training loss curve of the DQN
agent, showing a rapid decrease in loss during early epochs followed by gradual stabilization,
confirming effective learning and convergence. Future work will further quantify these convergence
patterns to strengthen the comparative analysis of learning stability.

Loss vs Epochs
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0 200 400 600 800 1000
Epochs

Figure 2. Loss curve of the DQN agent
5. Conclusion

These experiments verify that after 600 epochs, deep reinforcement learning learns highly efficiently
on noisy signals, maintaining an easy combination of cooperation in key steps even in the presence
of uncertainty, where a high average score per game of DQN was the best for all strategies, yielding
better results than QL and traditionally even beating traditions. That is why DQN agents gradually
develop an intrinsic understanding of strategy dynamics and errors through trade-off exploration and
exploitation. This allows the DQN agents to well-discriminate true betrayal from random mistakes
in interpreting opponents strategy but avoid meaningless retaliation and retain long-term trust when
studying opponents. By contrast, tabular QL agents are constrained by shallow representations and
cannot adapt to changes in the environment. Therefore, their generalization capability is limited, and
they often lead to brittle or plateaued strategies that are incapable of recovering from
misunderstandings caused by noise.

Overall, the results of our research suggest that deep reinforcement learning methods can not only
attain higher returns, but also enhance sustain of cooperation in noisy I-PD. Thus, the reinforcement
learning approach presented here will provide strong and flexible possibilities. Going beyond these
quantifiable performance improvements, DQN agents can show human-like behavior, with agents
possessing feelings of tolerance and forgiveness, and showing day-to-day coping when making
mistakes instead of behavior being suicidal (doing revenge blindness). This further sophistication
implies that future work can extend this method to larger multi-agent environments and study how
cooperation results, settles, and evolves in uncertain and partially-known situations.
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