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Abstract.  In recent years, quadruped robots have received many attention due to excellent
adaptability in complex terrains,and the key to their stable locomotion lies in gait
coordination. But,the traditional central pattern generator (CPG) models often face
challenges such as high reliance on manual experience for tuning coupling parameters and
poor adaptive capability. To address this problem, this study proposes a control method
integrating coupling dynamics modeling and intelligent optimization. And,a four-leg
coupling dynamics model based on Hopf nonlinear oscillator is constructed, in which
coupling matrix describes inter-leg phase relationships. The matrix is automatically
optimized by incorporating a genetic algorithm and implementing global search with a phase
synchronization stability metric as the fitness function. Simulation results show that the
optimized coupling parameters significantly improve the phase coordination ability of the
four-leg oscillators. This effective eliminates phase deviations under natural dynamics, and
greatly enhances both gait synchrony and stability.And so,the study contributes to the
autonomous adaptability of quadruped robots by providing a data-driven global optimization
framework for their gait control.\
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1. Introduction

Quadruped robots are robotic models bio-inspired by mammals of advanced quadrupedal species.
They adopt the general anatomical structure of animals that move on four legs, including joint-like
leg movements and central nervous system control. Unlike robotic arms or wheeled robots, they
feature a design of four legs, a more complicated mechanism of balance control, and a more actuated
structure resulting in higher flexibility and development potential. Quadruped robots have gained a
good amount of attention in robotics and due to good agility and balance properties have lately been
used on tasks of complex-terrain exploration, operation on high terrains, environmental sensing, and
short-range assisted transportation. On a quadruped robot, accurate prediction and control of its leg
movements is important. The bio-inspired CPG provides a more effective means for prediction than
the common PID-based control structure. However, in existing CPG models parameters have to be
tuned on the base of manual experience due to lack of an adaptive optimization mechanism for the
coupling parameters among different leg structures. Intelligent optimization can be introduced into
predictive process for improving its efficiency and accuracy.
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In this regard, it becomes very attractive to find an optimization approach applicable to
engineering application, which can automatically update the coupling parameters and enhance the
gait stability. CPG models meet difficulties in manual parameter settings, inadequate model
convergence, and low adaptability for different gait generation. Therefore, we apply some intelligent
optimization approaches, including the genetic algorithm (GA), to conduct a global search and an
adaptive optimization of the coupling matrix and the key parameters in the models. This approach
effectively enhances the stability and robustness of CPG output signal so that the robot can keep the
behavioural coordination of gaits, despite random disturbances, or on another terrain, or changing
initial conditions. The optiarithmetized algorithm process reduces the dependence on the human
experts for parameter tuning and completed the higher level of the system automation and
intelligence in the control system of the quadruped robots.

Ultimately, we hope to create a CPG control architecture using biologically inspired design and
engineered practicality which gave quadruped robot systems greater gait stability, scalability, and
environmental adaptability, a foundation to build of which deep learning, neural network control,
etc., may be integrated to/from in the future.

2. Model description

This study takes a quadruped robot as its platform. The locomotion of quadruped robots is based on
the gaits of quadrupedal animals, where diverse motion patterns are achieved by adjusting leg
phases. For quadrupedal animals, there are always changes in the periodic motion patterns of their
legs across various actions and states during movement, such as walking, running, and turning. For
example, cats and dogs, the most common quadrupedal animals, exhibit distinctly different motion
patterns in their four legs during running versus walking. These periodic and variable motion
patterns are termed gaits.

When moving at low speeds, such animals cat and dog, walk, moving the four legs up and down
in turn, so that each foot is assured of support; when impelled to move faster they trot, swinging, to
reduce the number of legs in contact with the ground, pairs of legs diagonally opposite and in
succession; if further urged they gallop, swinging the fore and hind feet in pairs but never at the
same time, at a kind of high-speed, rat-tat rhythm. Although different from one another, these three
gaits have in common the feature that in walking with all four legs the actual phase relation of the
movements is such as to adjust automatically itself to whatever speed and environment calls for the
four limbs in action. That indicates that the animal has no control over any one leg when they walk
but instead is using an internal rhythm generator that allows the legs to work together in a
coordinated manner with synchronized phase differences [1].

As far as biology is concerned, this rhythmic generation is due to the CPG in the spinal cord. In
other words, the 'gaits’ of animals really emanate from the behaviour of the ensemble of coupled
oscillators. By modifying the coupling clearly the robot can produce different gaits and even walk
smoothly into a run. A Central Pattern Generator or “CPG” is an interconnected set of neurons that
can produce stable periodic signals due to its internal structure alone without involvement of sensory
input. Different patterns of connection between the neurons effectively produce certain definite
phase relations and thus varying patterns of motion. Thus the difference between the two and
another gait is really the same phenomenon merely reorganised. It is for this reason that CPGs are
one of the essential ingredients in a gaitswitching organism.

These robot models are very much inspired by the construction and action of the CPG; a kind of
similar system capable of periodic motions on its own is constructed by way of mathematical means.
The most common way of realizing this is using nonlinear oscillators to create a coupled oscillator
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network. “By representing CPG neurons with nonlinear oscillators and coupling several oscillators,
it is possible to reproduce the phase coordination displayed between biological legs”. Hence, a
quadruped robot will be modeled by four oscillators, each in charge of periodically moving one leg.
These coupled oscillators now “work together with appropriate phase lags: by parametrizing the
strength of coupling between the oscillators and the lags between their phases, the robot can produce
different gaits and switch from one gait to another in a smooth and flexible way [2].

Subsequently, a four-leg coupled oscillator model is constructed, and its output simulates the gait
rhythm for the quadruped robot.

A single-leg model is first addressed. As mentioned above, each leg of the quadruped robot can
be represented by a nonlinear oscillator, and a single oscillator corresponds to one "oscillator unit".
At the single-leg level, the oscillator must feature periodicity (the continuously repeating periodic
trajectory for leg swing), stability (the ability to return rapidly to its original rhythm after minor
disturbances), and controllability (the adjustable frequency, phase, and amplitude to motion
requirements). During its dynamic evolution, a nonlinear oscillator often forms a closed trajectory,
known as a limit cycle. This means the system can maintain bounded and stable periodic motion in
the absence of additional feedback. This study adopts the Hopf adaptive frequency oscillator
(HAFO) with a limit cycle attractor as the foundation for the single-leg model. This model generates
stable periodic output while adjusting its intrinsic frequency in response to external rhythmic
signals. It is highly suitable as a gait generation unit for quadruped locomotion. Its standard form is
as follows:

(1)

(2)

Where ω is the instantaneous frequency of the oscillator; μ is the control amplitude, which
determines the radius (r) of the limit cycle; (x, y) is the system status and phase, for which r = √x2 +
y2 is true; x and y correspond to the forward-backward and upward-downward swing phases of the
leg structure, respectively.

Oscillator Code
for i = 1:steps-1

for leg = 1:4

r2 = x(leg,i)^2 + y(leg,i)^2;

coupling_x = sum(K(leg,:) .* (x(:,i)' - x(leg,i)));

coupling_y = sum(K(leg,:) .* (y(:,i)' - y(leg,i)));

dx_dt = mu*(1 - r2)*x(leg,i) - omega*y(leg,i) + coupling_x;

dy_dt = mu*(1 - r2)*y(leg,i) + omega*x(leg,i) + coupling_y;

x(leg,i+1) = x(leg,i) + dx_dt * dt;

y(leg,i+1) = y(leg,i) + dy_dt * dt;

end

end

Substituting x and y yields    

x = (μ - (x2 + y2))x − ωy

y = (μ − (x2 + y2))y − ωx

r = (μ − r2)r
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From that we can analyse the amplitude evolution of the system, growing when r < √μ and
decaying when r > √μ, until r = √μ is reached. A limit circle exists. In other words, the Hopf
oscillator keeps a fixed period and amplitude because of its dynamics, independent from additional
control, which is part of the reason it is so pertinent for bioinspired gait control.

In actual operation, an external forcing term is typically introduced to better align with realistic
mechanical environments, for example:    

This ensures that the oscillator can automatically adjust its frequency in response to external
rhythms while preserving the stability of the limit cycle [3] [4]. Figure 2 shows the limit cycle
trajectory.

Figure 1. Limit cycle trajectory

A single leg periodic model based on a single Hopf oscillator is developed. However, a single leg
model generates the trajectory of a periodic motion of only one leg; it does not produce
automatically the required innocent trot or walk of the robot, i.e. coordinated gaits or trotting. In
fact, for a quadrupedal animal (or in general) a gait is not simply the superposition of the four legs'
independent movements; it is a stable relationship of the phases of the several legs relative to each
other. Hence there is some "coupling" (influence of each on the other) that must be included in the
expansion of a four leg gait based on a single leg model. Also, the phase configuration is fixed, and
relative changes among the topologically different states can occur.

In biological systems this coordinating ability is a result of the aforementioned CPG consisting of
a number of neuronal rhythmic units being weakly coupled to one another in varying degrees,
producing rhythmic outputs phase locked, i.e., with a stable configuration of phase to the limb
muscles. For example, when cats or dogs switch speed or patterns of movement, so the phase
relationships among their four legs change allowing them to switch between different gait patterns.

The essential differences between these gaits are due to certain combinations of phase
differences. To this end the four oscillators must exchange information by means of coupling terms,
in such a way as to allow the robot to change the gait and remain stable in the same manner as real
animals do. The system will then tend to settle in the correct phase pattern [5].

The coupling approach leads to a phase transition in the system from the “independent
oscillation” of the single oscillators to the “cooperative oscillation” of the multiple oscillators. The
oscillators are no longer isolated, but rather the frequency, phase and amplitude of each oscillator is
affected by the others. A careful choice of the coupling matrix K allows the four oscillators to settle
in stable states of phase relationships, generating a gait. Moreover, different coupling configurations
produce different patterns of phase locking, leading to different robot types being seen waddling.

The coupling matrix K is thus a symmetric 4x4 matrix, each entry Kij indicating the strength of
the coupling from leg i to leg j, or in other words how much each oscillator can "influence" another

sin(Ωt + ϕ0)
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phase. Although in general inter-leg interactions are bidirectional so a symmetry is assumed, i.e.,Kij
= Kji. It can also be seen from K that as K gets larger, the coupling strength between each leg gets
larger, and thus the stronger the attraction of the phase of the two coupled oscillators, making it
easier for them to synchronize or remain at a fixed phase difference. When a particular coupling
term becomes high, the corresponding two legs quickly "stick" to a fixed relative phase, resulting in
a particular gait. It follows that the coupling matrix not only determines the interaction of oscillators,
but also generates a particular type of gait. That is to say, the elements of K itself can be modified,
and thus the robot mathematically "chooses" what kind of motion to do; therefore this is a very
simple and highly controllable means of changing gait and gait switching.

3. Algorithm description

This study is concentrated on the matrix K containing purely 6 continuous variables that correspond
to conformities among the 4 legs. Gait stability is a very nonlinear output, depending on the
complexity of the oscillator behavior, the phase difference evolution, and disturbance propagation,
so gradient methods of explicit differentiation are unclear, and classical gradient methods are useless
in searching this complex and high-dimensional space. An intelligent optimization-based approach
is suggested. In this study we implement that a GA evaluates each parameter’s performance through
a fitness function. This is especially applicable to complex imaging structures which are likely to
have many local optima. The GA has a stochastic search processes and utilizes evolutionary
selection techniques successfully exploring vast parameter spaces and not falling into poor local
maximums. With different random initial phase conditions, we can find coupling matrices which
perform well in different initial states, this will give a K which is more general and robust and
achieve better gait stability [6].

To quantify the synchronization level among the four legs, a stability index is adopted:

(3)

If the four legs are highly synchronized, their trajectories will closely align, resulting in a smaller
value for S(K). Conversely, if phase imbalance or desynchronization occurs, this index will increase.
The optimization objective is to find the coupling matrix that minimizes S(K) [7].

The solution process using the GA follows classical evolutionary steps. The overall procedure is
as follows:

Population Initialization: Randomly generate multiple sets of coupling matrix parameters K to
form an initial solution set.

Fitness Evaluation: Calculate the stability index S(K) for each individual, which serves as its
fitness value.

Selection Mechanism: Select individuals with better performance from the current population to
provide "genetic material" for the next generation.

Crossover Operation: Pair selected individuals and generate new candidate solutions by
exchanging parameters.

Mutation Step: Randomly perturb certain parameters with a small probability to enhance
diversity within the search space.

Update the population and repeat the above process, until the generation limit or convergence
criteria are met.

S (K) = 1
T ∑T

i=1 ∑a<b (xa (ti) − xb (ti))2
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4. Application and comparison

The GA is used to find the matrix K that minimizes the stability index S(K). The stability function is
defined as follows:

(4)

Rationale of the stability function: Calculate the squared phase errors for the oscillators at each
time instant t and then average these values over time. The GA code shown below.
nVars = 6;

lb = 0.0*ones(1,nVars);

ub = 2.0*ones(1,nVars);

fitnessFunc = @fitnessWrapper;

options = optimoptions('ga',...

'PopulationSize',30,...

'MaxGenerations',20,...

'PlotFcn', {@gaplotbestf});

[bestopt, funcvalue] = ga(fitnessFunc, nVars, [], [], [], [], lb, ub, [], 
options);

The initial population size is 30, and evolution occurs for 20 generations. The stability index S(K)
is implemented for the four legs in the matrix K. The diagonal pairs are Oscillator 1 with Oscillator
2, and Oscillator 3 with Oscillator 4. Subsequently, the coupling is applied;

Figure 2. Graph of generation number vs. fitness value

The optimal value for the coupling matrix K is obtained.The resulting K is then transformed into
the coupled matrix and substituted into the four-leg oscillator model.The transformation method is
as follows:

S (K) = 1
T ∑T

i=1 ∑a<b (xa (ti) − xb (ti))2



Proceedings	of	CONF-SEML	2026	Symposium:	Importance	of	Machine	Learning	Methods	and	Analysis	in	Engineering
DOI:	10.54254/2755-2721/2026.AS31311

7

Figure 3. Matrix transformation method

The transformation yields:

Figure 4. Optimized coupling matrix

In the non-coupled case, K is a corresponding 4x4 zero matrix.
The following presents a comparison before and after coupling:

Figure 5. Comparison before and after coupling

Before GA optimization, the four legs could maintain a certain stable rhythm under the system's
inherent natural dynamics; however, a phase deviation of approximately 1/11 of a cycle persists
between them, and a complete gait synchronization is not achieved. After the GA search for the
optimal coupling matrix, the phase errors among the oscillators converge significantly to near zero,
and the previous phase offsets are essentially eliminated. Overall, the optimized coupling structure
effectively enhances the inter-leg phase attraction, resulting in a higher degree of coordination and
synchrony in the final gait [8].

5. Discussion

A coupled oscillator model is used as a basis for improving phase consistency of its gaits through
intelligent optimization technology. This work favours a data-driven approach to automatically tune
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the coupling structure, so that the system is capable of producing stable gait outputs for a wider
variety of starting states or perturbations, compared with prior CPG control methods that are heavily
reliant on experience to choose coupling parameters or phases to lag behind each other. Prior work
manually dictates inter-leg phase relationships such as roughly a half-cycle difference for diagonals
or 90° difference for trotting. manually set coupling strengths do not always ensure convergence or
stability in more complicated cases. On the other hand, since GA in this paper can search for a
coupling matrix that operates towards attraction of phases and confluence of the legs based on the
actual dynamics of the system, resulting gait is much more robust. Moreover, S(K) explicitly focuses
on a difference in the end-effector trajectory between oscillators as opposed to things used in
previous work (frequency error, phase-locking time, energy function). As a result, it lend itself more
intuitively to the characteristics of synchronisation, more conducive to the optimisation process, and
finally, low cost and high scalability.

Although the model appears to be stable behaving in simulation, there are still aspects of it that
require further study. For instance, our current CPG is completely feedforward in nature. There is no
perception of ground contact nor do we consider the joint torque feedback observed in real animals’
nervous systems. Likewise, we still need to validate that generalization across a greater domain of
initial phases exists. Future work may explore the feasibility of incorporating sensory feedback
loops, adaptive parameter adjustment of certain aspects of the model as well as how to react to
specific types of perturbation on such models if they are realized on physical robots.

Overall, this study validates the feasibility of automatically deriving multi-leg coupling
relationships through intelligent optimization. It provides a new direction for the further
development of CPG-based gait generation methods.

6. Conclusion

This work is devoted to gait generation for quadruped robots with coordinated gaits. Starting from a
dynamic coupled model with four Hopf oscillators, it improves the stability of the entire phase
through optimized coupling links. The first part concentrates on periodic motion accounting of a
single leg oscillator, then expands to coupled legs with inter-leg effects for the four legs. It explains
how to physically understand the role of the coupling matrix K for attraction and repulsion linking
with phase of each leg, thus laying down the mathematical basis for the generation of various typical
gaits. GA is employed to search and optimize those coupling parameters thereby improving the
coordination capability of the oscillators. A stability index S(K) which quantitatively sums up the
weighted phase errors of the four oscillators over the entire time period is formulated. The index
allows quantifying the degree of synchronization achieved for various coupling topologies. Using
multi-generational iteration, crossover, and mutation operations, the GA converges to the optimal
coupling parameters. Results show that this procedure reduces the phase error between the legs
significantly. The optimal parameters obtained in this way are then reconstituted into a symmetric
coupling matrix and plugged into the oscillator. Additional comparison experiments show that
without coupling the phase of each leg does follow to some extent, but changes independently,
leading it to drift; with optimized coupling the system rapidly converges to a continuous and stable
rhythm, and the phase relationships between the four legs are obeyed to a much higher degree,
gaining in gait coordination. In short, the “coupling modeling + intelligent optimization” method
improves uniformity of gait synchronization performance greatly in quadruped robots. Moreover it
indicates strong extensibility and can likely be applied to other multi-joint systems, and also bio-
inspired motion control as well.
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