Proceedings of CONF-SEML 2026 Symposium: Importance of Machine Learning Methods and Analysis in Engineering
DOI: 10.54254/2755-2721/2026.AS31339

The Application of Artificial Intelligence in Software
Engineering: An Exploration of the Research Trajectory from
Requirements Analysis to Test Optimization

Weiyi Ren

School of Software, Shanxi Agricultural University, Jinzhong, China
rwy336611(@163.com

In the digital economy, traditional software engineering faces complex needs and
fast change, and it often meets risks such as cost overruns and low process efficiency. Al
methods, including machine learning and natural language processing, provide strong
support for a more intelligent form of development. This paper reviews the path of Al use in
software work through literature study and real cases, and it covers tasks from requirement
analysis to testing and operation. The findings show a shift from a simple helper to a driver
of the whole process, and cases from many fields report higher efficiency and better quality.
Yet several problems remain, such as weak model transparency, unstable data, and a lack of
skilled staff. It presents a framework and guides firms toward high-quality growth globally.

Artificial Intelligence(Al), Software Engineering, Machine learning

In the digital economy, software acts as a central driver of social change and industrial renewal.
However, the traditional software engineering model is difficult to cope with complex requirements
and rapid iteration of the market, and a large number of software projects are faced with risks such
as budget overruns and schedule delays, which are caused by subjective requirements analysis, low
development efficiency and insufficient test coverage [1]. The breakthrough of Artificial
Intelligence(Al) technologies, such as deep learning and natural language processing, has brought
revolutionary opportunities for software engineering, which can not only automate repetitive tasks,
but also optimize decisions and improve software quality and efficiency through data-driven [2]. For
this reason, a systematic review of its application path is essential. From an academic view, this
work can close existing gaps and help form a clear and complete framework. From an industry view,
it can guide firms in practice and offer technical support for developers [3]. The main aim of this
study is to trace how Al is used across the full software engineering process and to build a usable
framework. It centers on two main ideas: common use scenes of Al in different fields, and clear gaps
in its performance, plus the key barriers and possible ways toward deeper links with software
engineering. This paper has a layout. Section 2 gives the basic theory. It describes the software
lifecycle, Al tools, and their relations. Section 3 shows Al use in analysis, design, coding, testing,
and upkeep, with cases. Section 4 reviews integration issues. These cover technical limits, practical

© 2026 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

10



Proceedings of CONF-SEML 2026 Symposium: Importance of Machine Learning Methods and Analysis in Engineering
DOI: 10.54254/2755-2721/2026.AS31339

concerns, skill gaps, and ethical risks, and it suggests future research paths. Section 5 sums up
results and practical value.

2. Theoretical background
2.1 Traditional software engineering process

Traditional software engineering follows five main stages: needs review, system planning, coding,
testing, and maintenance. It works step by step, from clear goals and structure to program writing,
bug finding, and stable service after release in real practice today [4].

2.2 Core Al technologies related to software engineering

The link between artificial intelligence and software engineering depends on three main tools:
machine learning, natural language processing, and large language models.First, machine learning
works as the main engine. It appears in supervised tasks, such as defect prediction and need
grouping, using past project data and methods like support vector machines and random forests. It
also appears in unsupervised tasks. These include code grouping and similarity checks, which help
reduce repeated code. The next area is natural language processing. It gives meaning support for
software work. It applies tools like word splitting and entity tagging. These methods turn free text
into clear data and improve requirement study accuracy [5]. Models such as BERT find conflicts in
files. This lowers manual effort and raises overall work efficiency for teams in real projects today
often.

Large language models mark a new stage of generative intelligence in software engineering. With
training on large datasets, they can perform tasks such as code writing and error repair [6].

2.3 Technical complementarity and paradigm evolution of AI and software engineering

The synergy between Al and software engineering comes from their technical fit. Software
engineering offers a clear structure, and Al adds automation and smart functions. This reduces
manual work and improves efficiency levels.The integration of the two realizes "1+1>2"—the
structured data of the former provides samples for AI model training, and Al technology promotes
software engineering from "artificial driven" to "data and intelligence dual driven". From the
perspective of paradigm evolution, Al-driven software engineering has gone through three stages:
the "auxiliary tool" stage (Al acts on a single link with an independent tool), the "process
embedding" stage (Al is deeply integrated into each process, such as the rapid transformation from
requirements to code), and the "whole process intelligence" stage (LLM runs through the whole
process to realize end-to-end intelligence and closed-loop optimization) [7]. At present, the industry
is moving towards the third stage, and the whole process intelligence is the core direction in the
future [8].

3. The core scenarios and practical applications of Al in software engineering
3.1 Application of Al in requirements analysis

Requirements analysis is crucial in software engineering, as its quality directly impacts project
success. Traditional methods often suffer from inefficiency and high error rates. Al, with its
automation and intelligent analysis capabilities, addresses these pain points effectively. The core



Proceedings of CONF-SEML 2026 Symposium: Importance of Machine Learning Methods and Analysis in Engineering
DOI: 10.54254/2755-2721/2026.AS31339

applications are concentrated in three aspects: For requirements acquisition, the NLP system can
automatically extract and classify requirements from multi-source data such as app store reviews to
solve the problem of time-consuming information leakage by manual methods [9]. The related
modules of Microsoft Dynamics 365 have reflected the efficiency value. In requirements conflict
resolution, Al identifies contradictory requirements through semantic graphs, and SAP's Al system
can combine historical data to quantify risks and output solutions. In terms of requirements tracking,
Al uniquely identifies requirements, establishes the whole process association, automatically locates
the affected links when requirements change, and reduces rework and shortens the delivery cycle
after the application of the head bank [10].

3.2 Application of Al in software design and development

Software design and development stay at the heart of software engineering. Al tools try to lift design
quality and speed up coding. Their main uses fall into three fields: smart architecture planning, code
creation and tuning, and help for component reuse. In architecture work, Al studies many past
projects and links them to current needs. This avoids plans that are too complex or too basic [11].
Microsoft Azure tools are now used in many firms. They shorten the full design cycle. GitHub
Copilot and similar systems can write code and remove repeated parts [12]. The CodeLlama model
supports language transfer and cuts platform change costs [13]. Reuse tools match and adapt
modules by themselves. IBM systems raise reuse levels and lower repeated development work. This
supports faster delivery in real projects.

3.3 Al applications in software testing and operation and maintenance

Testing and maintenance are central to software quality. Al tools move these stages forward with
automation and prediction. They lower labor needs and raise work speed. In testing, Al builds wide
test sets. In operations, AWS CloudWatch AlOps finds faults early and speeds checks, while IBM
systems adjust resources and reduce costs [14]. This change supports stable, large-scale services for
modern firms in real practice today worldwide across many sectors.

3.4 Typical industry application cases

Software needs in engineering vary by industry, so Al tools receive different types of attention.
Manufacturing and auto fields focus on stable systems. Volkswagen uses Google Gemini in its
myVW car service. The smart check unit finds software and hardware mismatch issues early. This
cuts repair demand and speeds fault response. Finance puts weight on risk control and rule
compliance. Standard Chartered Bank and PWC built a generative Al test tool for customer services.
The system found 17 defect types with NLP checks [15]. Review speed increased by 65 percent.
Output accuracy rose from 78 percent to 99.2 percent [15]. The Internet field prefers fast change.
The Snap social app in the United States upgraded “My AI” with Gemini. This cut the need review
cycle from five days to one day. Automatic coding reduced release time by 40 percent. Maintenance
tools kept delays under 50 ms, and daily use grew by 18 percent [16]. These cases show Al goals
change with context, scale, and work needs in practice.



Proceedings of CONF-SEML 2026 Symposium: Importance of Machine Learning Methods and Analysis in Engineering
DOI: 10.54254/2755-2721/2026.AS31339

4. Challenges and future in the integration of Al and software engineering
4.1 Technical challenges

In software engineering, Al still faces three main technical limits: low transparency, weak data
quality, and poor cross-scenario use. Many Al systems work like black boxes. Their inner rules are
hard to see, so their decisions are hard to explain. This lack of clarity restricts use in areas like
finance and healthcare, where clear logic is needed. Labeled data for software tasks costs a lot to
make. Data samples stay small, and most sets come from mature Internet projects [17]. This narrow
source lowers model strength. Missing data in special fields also hurts learning and slows real use.
At the same time, cross-scenario transfer remains weak. Projects differ by field, size, and form.
Models trained in one case often fail in others, so wide reuse is still hard [18]. This problem slows
stable adoption and limits large-scale industrial use in real practice today.

4.2 Challenges at the engineering practice and talent level

The core obstacles for enterprises to implement the integration of Al and software engineering focus
on three aspects. The first is the lack of compatibility between tools and processes. The existing tool
chains such as Jira and Git are disconnected from the data and processes of new Al tools, which
makes it difficult to realize automatic closed-loop. Second, the threshold for team adaptation is high,
developers will not use advanced functions of Al tools, and the training cost is high, which is
difficult for small and medium-sized enterprises to afford. Third, interdisciplinary talents are scarce.
Talents with both Al and software engineering capabilities are in short supply, difficult to recruit,
high cost, and significant salary premium of relevant positions are still vacant [19].

4.3 Assessing management and ethical compliance challenges

The use of artificial intelligence (AI) in software engineering faces many barriers that slow its
progress. A major issue is how to measure Al value. The costs of adoption are clear, but the expected
gains, such as lower failure risk, lack solid financial proof, and this weakens business interest.
Security and intellectual property also raise concern. Data may leak during model training, and Al
tools may reuse protected code. These risks require careful control. Ethical rules remain another
problem. Al systems can produce biased code, and responsibility for related errors is hard to assign
[20, 21]. These unresolved issues continue to limit trust and restrict large-scale deployment in real
projects in practice today.

4.4 Future research directions

To address the technical, practical, and ethical problems described above, future research on Al and
software engineering should seek clear progress and workable answers, with a few main directions
to guide work. First, develop Al that is transparent and dependable for software tasks. This can be
achieved by mixing knowledge graphs with causal tools to improve clarity, and by building open
systems for high-risk fields like finance and healthcare. And, create a shared evaluation framework.
Universities, companies, and professional bodies should cooperate to set multi-level standards that
measure efficiency, quality, and safety in both design and real use. What’s more, promote new styles
of human—Al teamwork. Roles should be clear, so Al handles routine duties and people focus on
creative work, supported by Al-based decision tools for smoother cooperation in practice.



Proceedings of CONF-SEML 2026 Symposium: Importance of Machine Learning Methods and Analysis in Engineering
DOI: 10.54254/2755-2721/2026.AS31339

5. Conclusion

This study explores how artificial intelligence, or Al, enters software engineering. It uses a
“technology—scenario—challenge—direction” frame to review Al use across many stages of software
work. The results show strong links between Al and this field. They also show a clear change. Al is
not only a helper now. It has become a main driver of smart processes. With real cases from several
sectors, the study shows how Al helps with requirement analysis, system design, and code building.
It also explains how good adaptation can improve daily efficiency.

The paper looks at common limits in Al use. It then gives advice for both scholars and
practitioners. For academic research, it calls for more work on interpretable models and few-shot
learning. It also asks for shared datasets and common evaluation rules. For small and medium firms,
the advice is to use mature tools first. Large companies should build integrated platforms and
strengthen data protection.

A shortage of skilled staff remains a serious problem today. To close this gap, the study backs
shared training plans. These cover school links and in-house courses. It highlights cross-field
learning and long-term skill growth programs for workers today. With these steps, the sector can
build broader skills and reduce the lack of trained experts here over time. Such actions support
steady and responsible development in practice today.

References

[1] Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H. P., Kaplan, J., ... & Zaremba, W. (2021). Evaluating
large language models trained on code. arXiv preprint arXiv: 2107.03374. https: //arxiv.org/abs/2107.03374

[2] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language
models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901. https:
/Iproceedings.neurips.cc/paper/2020/hash/1457¢0d6bfcb4967418bfb8ac142f64a-Abstract.html

[3] Willems, M. (2025). How Standard Chartered is applying software testing discipline to GenAl. QA Financial.
https: //qa-financial.com/how-standard-chartered-is-applying-software-testing-discipline-to-genai/

[4] Alessio Ferrari, Liping Zhao, and Waad Alhoshan. 2021. NLP for requirements engineering: tasks, techniques,
tools, and technologies. In Proceedings of the 43rd International Conference on Software Engineering: Companion
Proceedings (ICSE '21). IEEE Press, 322—323. https: //doi.org/10.1109/ICSE-Companion52605.2021.00137

[5] Lu,S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A., ... & Liu, S. (2021). CodeXGLUE: A machine
learning benchmark dataset for code understanding and generation. arXiv preprint arXiv: 2102.04664. https:
//arxiv.org/abs/2102.04664

[6] Nijkamp, E., Xie, B., Hayashi, H., Pang, B., Xia, C., Xiong, C., ... & Zhou, Y. (2023). CodeGen2: Lessons for
training LLMs on programming languages. arXiv preprint arXiv: 2305.02309. https: //arxiv.org/abs/2305.02309

[7] Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., ... & Zimmermann, T. (2019). Software
engineering for machine learning: A case study. Proceedings of the 41st International Conference on Software
Engineering: Software Engineering in Practice, 291-300. https: //ieeexplore.ieee.org/document/8804457

[8] Yingwei Ma, Rongyu Cao, Yongchang Cao, Yue Zhang, Jue Chen, Yibo Liu, Yuchen Liu, Binhua Li, Fei Huang,
and Yongbin Li. 2025. SWE-GPT: A Process-Centric Language Model for Automated Software Improvement. Proc.
ACM Softw. Eng. 2, ISSTA, Article ISSTA104 (July 2025), 22 pages. https: //doi.org/10.1145/3728981

[9] Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can
language models be too big? Proceedings of the 2021 ACM Conference on Fairness, Accountability, and
Transparency, 610-623. https: //dl.acm.org/doi/10.1145/3442188.3445922

[10] Lozhkov, A., Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Mou, C., ... & De Vries, H. (2024). StarCoder 2 and The
Stack v2: The Next Generation. arXiv preprint arXiv: 2402.19173. https: //arxiv.org/abs/2402.19173

[11] Chen, Z., Kang, Y., Li, L., Zhang, X., Zhang, H., Xu, H., ... & Wu, R. (2021). Towards intelligent incident
management: Why we need it and how we make it. Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering, 1487-1497. https:
//dl.acm.org/doi/10.1145/3368089.3417055



Proceedings of CONF-SEML 2026 Symposium: Importance of Machine Learning Methods and Analysis in Engineering
DOI: 10.54254/2755-2721/2026.AS31339

[12] Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D., ... & Sutton, C. (2021). Program synthesis
with large language models. arXiv preprint arXiv: 2108.07732. https: //arxiv.org/abs/2108.07732

[13] Xu, F. E., Alon, U., Neubig, G., & Hellendoorn, V. J. (2022). A systematic evaluation of large language models of
code. Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming, 1-10. https:
//dl.acm.org/doi/10.1145/3520312.3534862

[14] Patel, J. S. B. (2025). Al-driven test automation: transforming software quality engineering. Journal of Computer
Science and Technology Studies, 7(2), 339-347. https: //doi.org/10.32996/jcsts.2025.7.2.35

[15] Crudu, V., & Mold Stud Research Team. (2025, August 12). Exploring the impact of Al on financial software
testing - revolutionizing the future of fintech. MoldStud. https: /moldstud.com/articles/p-exploring-the-impact-of-
ai-on-financial-software-testing-revolutionizing-the-future-of-fintech

[16] Najmi, A., & El-dosuky, M. A. (2025). Intelligent software testing for test case analysis framework using ChatGPT
with natural language processing and deep learning integration. Journal of Computer Science, https:
//doi.org/10.3844/jcssp.2025.1140.1155

[17] Allamanis, M. (2019). The adverse effects of code duplication in machine learning models of code. Proceedings of
the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, 143-153.https: //dl.acm.org/doi/10.1145/3359591.3359735

[18] Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data
Engineering, 22(10), 1345-1359.https: //iceexplore.icee.org/document/5288526

[19] Sam Lau and Philip Guo. 2023. From "Ban It Till We Understand It" to "Resistance is Futile": How University
Programming Instructors Plan to Adapt as More Students Use Al Code Generation and Explanation Tools such as
ChatGPT and GitHub Copilot. In Proceedings of the 2023 ACM Conference on International Computing Education
Research - Volume 1 (ICER '23), Vol. 1. Association for Computing Machinery, New York, NY, USA, 106-121.
https: //doi.org/10.1145/3568813.3600138

[20] Mittelstadt, B. (2019). Principles alone cannot guarantee ethical AI. Nature Machine Intelligence, 1(11), 501-
507.https: //www.nature.com/articles/s42256-019-0114-4

[21] Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of Al ethics guidelines. Nature Machine
Intelligence, 1(9), 389-399.https: //www.nature.com/articles/s42256-019-0088-2



