
Proceedings	of	CONF-SEML	2026	Symposium:	Multimodal	Data	Acquisition:	Applications	in	Physiological	and	Behavioral	Research
DOI:	10.54254/2755-2721/2026.AD31512

©	2026	The	Authors.	This	is	an	open	access	article	distributed	under	the	terms	of	the	Creative	Commons	Attribution	License	4.0
(https://creativecommons.org/licenses/by/4.0/).

11

Survey: Training-Free Structured Compression of Large
Language Models

Zixuan Shao

Glasgow College, University of Electronic Science and Technology of China, Chengdu, China
2022190505021@std.uestc.edu.cn

Abstract. The well-known Large Language Model (LLM) compression is essential for
enhancing computational efficiency, yet a systematic summary of investigation into
structured pruning and low-rank decomposition remains absent in current literature. This
work addresses the gap by providing a comprehensive review specifically focused on these
two methodologies. Representative approaches are categorized and evaluated, including
LLM-Pruner and SlimGPT for structured pruning, and ASVD and SVD-LLM for
decomposition. These methods are rigorously analyzed in terms of algorithmic design,
accuracy retention, and hardware adaptability. Through unified evaluation and comparative
analysis, DISP-LLM and MoDeGPT are identified as the current state-of-the-art within their
respective fields. Consequently, a conceptual framework is established to provide practical
guidance for future research into efficient, training-free, and scalable LLM compression.

Keywords: LLM, Structured Pruning, Low-Rank Decomposition, Parameter Reduction

1. Introduction

The development of large language models (LLMs) such as GPT-4, PaLM, and LLaMA has changed
the artificial intelligence research including natural language understanding, dialogue systems, code
generation, and multimodal reasoning [1-3]. Actually, the trade-off for the sophisticated reasoning
that seen in today’s models is their sheer size. That is to say, operating billions of parameters
demands a level of power and memory that many real-world applications simply cannot sustain. In
order to bridge the gap between high-end performance and edge-side deployment, prioritize
compression techniques that trim the fat without losing the intelligence are called for.

Structurally, LLM lifecycles transition from broad-scale pre-training to more nuanced post-
training refinements, for example, the alignment and instruction tuning [4,5]. Within this pipeline,
compression has shifted from an elective optimization to a vital necessity. Indeed, unlike behavioral
fine-tuning, which recalibrates how a model responds, compression intervenes at the
representational level to curb computational overhead, making the deployment of these massive
systems economically and technically viable. (see Figure 1)

Model compression for LLMs encompasses a wide spectrum of approaches that can be
categorized along several dimensions. Training-based methods, such as knowledge distillation, rely
on additional optimization stages, whereas training-free approaches, including pruning and
decomposition, operate directly on pretrained weights without retraining.

Proceedings	of	CONF-SEML	2026	Symposium:	Multimodal	Data	Acquisition:	Applications	in	Physiological	and	Behavioral	Research
DOI:	10.54254/2755-2721/2026.AD31512

12

Moreover, methods can be structured or unstructured, where structured compression (e.g., layer
pruning, block removal) maintains hardware-friendly patterns that facilitate speedup, while
unstructured approaches (e.g., sparse pruning) primarily save storage but yield limited runtime
benefits. Among these, pruning-based and low-rank decomposition- based methods have shown
particular promise due to their balance between interpretability, efficiency, and compatibility with
existing architectures. Quantization, although widely studied, focuses more on numerical
representation and thus falls slightly outside the scope of this survey.

Figure 1. Overall taxonomy of Large Language Model (LLM) compression methods

In the literatures, it is seen that the current surveys [6-8] normally categorize LLM compression
into quantization, pruning, and distillation. While they always [6] emphasizes inference efficiency
and tuning-free methods that overlooks low-rank decomposition and offers only a high-level view of
structured pruning. Similarly, Tang et al. [7] focuses on Transformer-specific pruning but lacks a
unified framework to distinguish between varying granularities and design objectives. It is worth
noting that Park et al. [8] include low-rank approximation, their analysis is too coarse-grained to
differentiate modern fine-grained pruning schemes or incorporate the latest decomposition
breakthroughs.

To address these present limitations in the above-mentioned reviews articles and books, this
paper will provides a systematic and in-depth review of the most recent LLM compression methods,
with a particular emphasis on structured pruning and low-rank decomposition, two complementary
yet rapidly evolving families of techniques. Structured pruning removes redundant components such
as layers, attention heads, or neuron groups, thereby achieving hardware-friendly acceleration, while
low-rank decomposition approximates large weight matrices with compact factorized
representations, reducing both memory footprint and computational cost. By bridging these two
perspectives, this work not only synthesizes their theoretical principles and empirical outcomes but
also highlights their interrelations, advantages, and practical trade-offs.

In summary, the contributions of this work are threefold: i) In this paper, a unified taxonomy and
conduct a detailed examination of structured pruning methods for LLMs are established, including
LLM-Pruner [9], ShortGPT [10], and SliceGPT [11], analyzing their structural granularity, pruning
strategies, and acceleration effectiveness; ii) Then, a comprehensive review of recent low-rank
decomposition methods such as ASVD [12], SVD- LLM [13], and MoDeGPT [14], elucidating their
mathematical formulations, optimization strategies, and layer-specific adaptations to transformer
architectures; iii) Last but not least it is provided unified evaluations and critical comparisons across
existing methods, discussing their trade-offs among compression ratio, model fidelity, and

Proceedings	of	CONF-SEML	2026	Symposium:	Multimodal	Data	Acquisition:	Applications	in	Physiological	and	Behavioral	Research
DOI:	10.54254/2755-2721/2026.AD31512

13

computational efficiency, while identifying promising research directions toward more principled
and robust LLM compression frameworks.

2. Background

2.1. Foundations of model compression

It is well-known that the scaling of Transformer-based LLMs necessitates compression frameworks
that balance efficiency with accuracy. These efforts rest on two theoretical pillars: the one is sparsity,
and the other is low-dimensionality. For the sparsity, it posits that only a fraction of parameters are
functionally essential. For the low-dimensionality, it suggests high-dimensional weights can be
projected into compact subspaces. By framing redundancy through these lenses, the researcher can
move beyond specific e algorithms to establish a generalized foundation for structural optimization.

2.2. Unstructured vs structured compression vs

Generally, a central distinction in sparsity-oriented compression lies in how sparsity is imposed on
the parameter space. i) For the Un-structured compression, it treats each weight as an independent
variable, but often producing irregular patterns that offer limited hardware acceleration; ii) For
structured compression, it normally introduces sparsity at the level of coherent computational units
—such as neurons, channels, attention heads, or entire blocks—resulting in regular sparsity patterns
that align more effectively with modern hardware execution models. This distinction captures
different assumptions about where redundancy resides within the architecture and forms a
conceptual taxonomy for evaluating trade-offs between expressiveness, inference efficiency, and
architectural coherence. By framing compression techniques within this structured–unstructured
dichotomy, subsequent sections can situate specific methods within a well-defined conceptual space.

2.3. Mathematical formulation

Model compression is frequently formalized through constrained optimization or low-dimensional
approximation. Sparsity-oriented approaches can be expressed as the following cardinality-
constrained optimization problem:

(1)

where denotes the compressed parameter vector and defines the target number of nonzero
parameters. This formulation is general and encompasses both structured and unstructured sparsity
depending on how the constraint is applied to individual parameters or predefined groups.

In parallel, low-dimensional compression is commonly described through matrix approximation.
Given a weight matrix , its low-rank characterization takes the form

(2)

which represents the best rank- approximation of under the Frobenius norm. This
formulation highlights the role of intrinsic correlations within weight matrices and provides a
mathematical basis for replacing high-dimensional linear transformations with compact, low-rank
representations.

minθ' L (θ') s. t. ∥ θ' ∥0≤ s,

θ' s

W ∈ Rm×n

W ≈ UkΣkV ⊤
k ,

k W

Proceedings	of	CONF-SEML	2026	Symposium:	Multimodal	Data	Acquisition:	Applications	in	Physiological	and	Behavioral	Research
DOI:	10.54254/2755-2721/2026.AD31512

14

In summary, these frameworks establish the theoretical basis for model compression by defining
the structural and geometric redundancies inherent in LLMs. Also, the above-mentioned principled
grounding allows the following sections to explore specific compression strategies through a
rigorous, unified lens.

3. Structured pruning

3.1. Taxonomy of structured pruning

The term “structured pruning” in large language models (LLMs) refers to the removal of
architecturally coherent computational units while retaining the dense tensor structures required for
efficient execution on modern accelerators. Briefly, it eliminates whole functional blocks including
neuron groups, attention heads, linear subspaces, and even entire transformer layers. Importantly, the
elimination approach of entire transformer layers directly cuts inference latency and memory
overhead. These operations target the Transformer Block as the primary computational unit (See
Figure 2).Subsequently, the structured pruning strategies always organized into three major types
according to their target granularity and underlying computational principles:

i) Module- and Head-Level Pruning focuses on the structured removal of fine-grained functional
units embedded in transformer submodules, such as MLP neurons, attention heads, or channel
groups. It is shown in the literatures that the LLM-Pruner [9] and similar methods utilize
dependency-aware grouping to preserve inter-layer tensor alignment based on the model’s graph
topology. Thus, by employing gradient-based saliency metrics on minimal calibration data, these
approaches facilitate data-efficient pruning. However, by providing high flexibility in compression
ratios, this category often yields modest FLOP reductions as the underlying macro-architecture
persists.

ii)Layer-Level Structural Simplification treats transformer layers themselves as pruning units.
Instead of focusing on internal submodules, these methods can assess the relative contribution of
each layer to the model’s forward transformation. For instance, ShortGPT [10] exemplifies this
approach by introducing a Block Influence metric that quantifies representational change via cosine
similarity between layer inputs and outputs. Layers that contribute minimally to semantic
progression can be removed entirely, yielding interpretable pruning decisions and substantial latency
reduction. This category exposes the inherent depth redundancy found across large-scale transformer
stacks and demonstrates that LLMs often operate far from minimal representational configurations.

iii) Matrix- and Dimension-Level Pruning category explores redundancy directly within the linear
transformations, projection matrices, and feature dimensions constituting the computational core of
transformers. It is reported that the SlimGPT [15] identifies redundant weight matrix dimensions via
second-order sensitivity, however, the SliceGPT [11] or the DiSP-LLM [16] treat feature width as a
direct optimization variable. By aligning pruning with the model's algebraic structure, these methods
enable architectural reparameterization. Thus they maintain dense matrix operations, ensuring
hardware efficiency while achieving global structural simplification.

As illustrated above, these categories changed the point of view of LLM redundancy from local
dependencies to global architectural and subspace geometry. This taxonomy redefines structured
pruning as a principled redesign grounded in computational invariance, representation sufficiency,
and hardware constraints, rather than simple component removal. A visual synthesis of these
strategies could be seen in Figure 2.

Proceedings	of	CONF-SEML	2026	Symposium:	Multimodal	Data	Acquisition:	Applications	in	Physiological	and	Behavioral	Research
DOI:	10.54254/2755-2721/2026.AD31512

15

3.2. Representative methods

The representative methods could divided into the following four parts:
i) LLM-Pruner [9] adopts a dependency-aware approach to module-level pruning. It first

identifies neuron groups via connectivity-aware structural discovery and then estimates group
importance through first-order loss approximation using small calibration sets. By pruning
dependency-preserving groups rather than isolated weights, it avoids misaligned feature maps and
supports data-limited scenarios. A lightweight recovery stage using LoRA fine-tuning compensates
for performance loss, preserving over 90% accuracy with approximately 20% parameter removal.

ii) ShortGPT [10] transitions pruning to the depth level of transformers. Its Block Influence
metric evaluates how much each layer changes the hidden-state representation. Low-influence layers
are removed directly, with experiments showing that up to 25% of layers can be discarded with
minimal accuracy degradation across LLaMA and Mamba families. The method requires no gradient
computation, scales efficiently, and integrates cleanly with quantization or other compression
techniques.

iii) SlimGPT [15] extends the Optimal Brain Surgeon framework to structured units such as
attention heads or matrix columns. Second-order error estimates are computed via approximate
Hessian inverses, realized efficiently through batched Cholesky decomposition. A logarithmically
increasing pruning schedule addresses cumulative sensitivity across depths. SlimGPT occupies an
intermediate position—more principled than magnitude pruning but more flexible than full-layer
removal—achieving improved latency–accuracy trade-offs.

iv) SliceGPT [11] exploits orthogonal invariance around RMSNorm to reduce dimensionality
without retraining. PCA-based analysis identifies low-variance feature components, which are
pruned while preserving dense computation.

v) DiSP-LLM [16], enables per-layer heterogeneous widths using binary dimension- selection
matrices predicted by a hypernetwork. Its selection mechanism incurs no parameter overhead,
supports efficient inference, and maintains high zero-shot accuracy even at aggressive pruning
ratios.

3.3. Methodological evolution and analysis

The evolution of structured pruning reveals a shift from local dependency modeling toward global
architectural restructuring and algebraic reparameterization. Early works such as LLM-Pruner [9]
focused on preserving micro- level dependencies and ensuring data-efficient saliency evaluation.
These methods offered fine control over pruning granularity but yielded modest acceleration due to
limited architectural modification.

The emergence of layer-level approaches (e.g., ShortGPT [10]) marked a conceptual shift:
pruning became a process of identifying structurally redundant depth rather than optimizing
individual weights. This broadened perspective led to more interpretable pruning and enabled
substantial real-world speedups.

Matrix-level and second-order methods such as SlimGPT [15] brought theoretical rigor by
combining sensitivity analysis with hardware-efficient structured units. Their focus on linear
transformations—the computational bottleneck of transformers—allowed pruning decisions to align
more directly with FLOP reduction.

The latest generation introduces dimension-centric frameworks such as SliceGPT [11] and DiSP-
LLM [16], which break the long-standing assumption that transformer layers share uniform width.

Proceedings	of	CONF-SEML	2026	Symposium:	Multimodal	Data	Acquisition:	Applications	in	Physiological	and	Behavioral	Research
DOI:	10.54254/2755-2721/2026.AD31512

16

These models reduce redundancy by reshaping representational subspaces, offering a more
fundamental rethinking of transformer architecture under compression constraints.

Collectively, these trajectories suggest that effective structured pruning is not achieved by
maximizing sparsity, but by reorganizing model computation around functional invariants and
algebraic constraints. This methodological progression points toward increasingly principled,
hardware-aligned, and theoretically grounded pruning frameworks for next-generation LLM
compression.

4. Low-rank decomposition

Low-rank decomposition has become a central paradigm for reducing the computational and
parameter complexity of large language models (LLMs). By expressing high-dimensional weight
matrices as products of lower-dimensional factors, these methods exploit the intrinsic spectral
redundancy of transformer architectures. Figure 3 provides a structural schematic, showing how the
principle of low-rank decomposition is applied to the key weight matrices within a Transformer
Block. In contrast to pruning-based approaches, which remove structural components, low- rank
methods operate from an algebraic perspective, viewing compression as a projection of learned
representations into compact subspaces. Recent developments form two major research lines: (1)
activation- and truncation-aware extensions of classical singular value decomposition, represented
by the ASVD and SVD-LLM family [12,13,17,18]; and (2) modular and activation-space
formulations represented by MoDeGPT and FLAT-LLM [14,19], which adapt decomposition to the
structural heterogeneity of transformer modules.

Figure 2. The foundational structure of a Transformer Block, illustrating the key weight matrices (
) targeted by structured pruning in Large Language Models (LLMs)

4.1. Taxonomy of low-rank methods

Usually, Low-rank LLM compression can be categorized by decomposition targets, activation
statistics, and architectural adaptivity.

WQ, WK, WV , WO, WU , WD

Proceedings	of	CONF-SEML	2026	Symposium:	Multimodal	Data	Acquisition:	Applications	in	Physiological	and	Behavioral	Research
DOI:	10.54254/2755-2721/2026.AD31512

17

Firstly, the Activation and Truncation-Aware Decomposition optimizes the factorization of
by incorporating activation covariance , as demonstrated in ASVD and SVD-LLM. By targeting

 , these methods align truncation with information flow to preserve critical spectral
components. Enhancements like adaptive rank allocation and residual compensation further address
the heterogeneous redundancy across Transformer layers.

Secondly, the Modular Decomposition exploits the distinct functional roles of MLPs and
attention mechanisms. Strategies such as MoDeGPT employ Nyström approximations for MLPs and
coupled-rank decomposition for key–query projections. This structural alignment ensures that
factorization respects cross-module dependencies, moving beyond uniform matrix operations to
maintain global model integrity.

Thirdly, the Activation-Space and Subspace-Oriented Compression targets the decomposition of
activation covariances instead of static weights. FLAT-LLM exemplifies this by utilizing per-head
PCA to isolate intrinsic low-dimensional subspaces within multi-head attention. By reducing
representation dimensionality and re-absorbing the basis into model parameters, these methods
mitigate cross-head interference and align truncation with empirical covariance. This shift facilitates
depth-wise adaptive capacity allocation based on semantic transformations.

As shown above, these strategies represent a transition from classical SVD toward activation-
aware, module-aware, and subspace-aware formulations. It is very important that this evolution
integrates algebraic decomposition with the specific structural geometry and information flow of
Transformer architectures.

Figure 3. Conceptual diagram of low-rank decomposition application in Transformer architectures.
A high-rank weight matrix (left) is approximated by two low-rank factor matrices, and , such

that

4.2. Representative methods

The development of low-rank decomposition for LLMs is illustrated through several representative
methods, each contributing distinct algorithmic insights.

ASVD. Activation-aware SVD [12] introduces whitening-based decomposition that minimizes
the reconstruction error of rather than . By applying a diagonal or Cholesky-based
whitening matrix such that becomes normalized, SVD is performed on , yielding a
decomposed form . This activation sensitivity emphasizes high-impact
spectral directions. An accompanying sensitivity-based truncation search (STRS) uses perplexity
evaluation to automatically determine the optimal rank per layer, enabling adaptive compression
without fine-tuning.

SVD-LLM. SVD-LLM [13] formalizes whitening through a theoretically grounded Cholesky
factor of the activation covariance , ensuring that truncating a singular value incurs an

W

S

WS WX

W U V

W ≈ UV

WX W

S SX WS

W'  =  Uk Σk VT
k  S−1

XX T σi

Proceedings	of	CONF-SEML	2026	Symposium:	Multimodal	Data	Acquisition:	Applications	in	Physiological	and	Behavioral	Research
DOI:	10.54254/2755-2721/2026.AD31512

18

exact reconstruction loss of . Its two- stage fine-tuning procedure updates low-rank factors
sequentially under LoRA-style reparameterization, avoiding interference between and .
SVD-LLM v2 [17] enhances flexibility through heterogeneous rank allocation across layers and
replaces the whitening step with a dual-SVD formulation to avoid numerical instability when
 is not positive-definite.

ResSVD. ResSVD [18] addresses the accumulation of truncation errors across depth by applying
a second SVD to the residual matrix . The final approximation

 preserves residual spectral information ignored by standard SVD. Additionally,
a partial-layer compression strategy restricts decomposition to later layers, redistributing the
compression budget to mitigate error propagation in early transformations.

MoDeGPT. MoDeGPT [14] introduces a modular decomposition framework based on
categorizing transformer components into three types: Type-I (MLP), Type-II (key–query), and
Type-III (value–output). Nyström approximation is applied to Type-I layers to preserve activation
diversity through ridge leverage scores. Type-II layers employ coupled-rank decomposition to align
the subspaces of key and query projections, maintaining attention consistency. Classical SVD is
used for Type-III layers. A global allocation mechanism based on entropic regularization distributes
compression budgets according to influence scores, preventing over-compression of sensitive layers.

FLAT-LLM. FLAT-LLM [19] performs per-head PCA to extract intrinsic activation subspaces
within multi-head attention. After truncation, the reduced bases are absorbed into the value and
output projections, maintaining parameter efficiency. The importance-preserving rank selection
(IPRS) algorithm assigns ranks adaptively according to input–output activation similarity, ensuring
that deeper layers receive more capacity when their semantic transformation intensity is higher. The
method requires no fine-tuning and is compatible with grouped-query attention architectures.

4.3. Mathematical and empirical analysis

The methodological evolution of low-rank approaches reflects a progression from classical spectral
approximation toward statistically informed, modular, and activation-adaptive formulations.

Spectral Foundations and Activation Geometry. Classical SVD assumes that the principal
singular directions of correspond to high-impact subspaces. Activation-aware methods refine
this assumption by instead decomposing , where whitens or rescales activations such that

 becomes isotropic. This transformation better aligns singular directions with downstream
information flow and ensures that truncation reflects true representational importance. The analytical
insight that truncation loss equals discarded singular values under whitening [13] provides
theoretical grounding for optimal rank selection.

Error Propagation in Deep Transformers. It is well-known that the problem with uniform low-
rank truncation lies in its tendency to trigger cumulative error propagation, hitting the early
Transformer blocks the hardest. Thus, ResSVD and SVD-LLM v2 [17,18] mitigate this by pivoting
to heterogeneous rank allocation and residual-based fixes. Normally, this method aligns with the
observation that representational demands vary by depth: i) early layers require high-capacity
feature transformation; ii) however, deeper layers can be compressed more aggressively as they
operate on lower-dimensional manifolds.

Modular Redundancy and Functional Constraints. These approaches recognize that attention and
MLP modules exhibit distinct redundancy structures governed by their nonlinearities. For instance,
the coupled structure of key–query projections imposes constraints on rank truncation, motivating

σi

Uk VT
k

XX T

R  =  W  −  Wr1

Wr  =  Wr1  +  Rr2

W

WS S

S−1X

Proceedings	of	CONF-SEML	2026	Symposium:	Multimodal	Data	Acquisition:	Applications	in	Physiological	and	Behavioral	Research
DOI:	10.54254/2755-2721/2026.AD31512

19

CR decomposition [14]. So that such module-aware decomposition preserves cross-head attention
consistency more effectively than uniform SVD.

Subspace-Based Adaptivity. It is always exemplified by FLAT-LLM [19]—leverages per-head
PCA to uncover latent low-dimensional structures within activation spaces. Different form weight-
centric SVD, this activation-aware strategy mitigates cross-head interference and maintains semantic
consistency more effectively.

Overall, the combination of spectral theory, activation statistics, and modular architectural
insights has reshaped low-rank decomposition from uniform matrix factorization into a family of
structurally aligned, theoretically informed, and empirically robust compression frameworks. The
shift from global SVD to activation- and module-aware techniques reflects a broader movement
toward decompositions that respect the hierarchical and functional geometry of large-scale
transformers.

5. Evaluations

Indeed, a consistent evaluation protocol is called-for to compare pruning-based and decomposition-
based compression methods for large language models. Although individual works often differ in
model size, calibration data, and downstream tasks, their overall characteristics can be qualitatively
aligned through dimensions such as structural granularity, reliance on data, retraining requirements,
approximation fidelity, hardware friendliness, and expected robustness under distribution shifts. In
order to facilitate systematic comparison, Table 1 summarizes the qualitative advantages and
limitations of representative pruning and low-rank methods.

To our best knowledge, the landscape of model pruning is defined by a tension between
architectural interpretability and computational efficiency. That is to say, LLM-Pruner represents a
class of gradient-based structural pruning that achieves fine-grained sparsity, but remains
bottlenecked by gradient dependencies. Meanwhile, the investigations into layer-wise redundancy
(e.g., ShortGPT and SlimGPT) demonstrate the feasibility of aggressive depth reduction, albeit at
the risk of diminished stability under diverse data distributions. To overcome these drawbacks that
metioned above, researchers developed the framework SliceGPT and DISP-LLM that focused on re-
engineering internal dimensionality.

Table 1. Qualitative comparison of representative pruning- and decomposition-based LLM
compression methods

Method Granularity Data Req. Retrain Fidelity HW Friendly Robust.

LLM- Structural (token / head / Medium (grad.) Opt. Medium High Medium

Pruner block)

ShortGPT / Layer-level Low No Medium–Low High Low

SlimGPT

SliceGPT Token / channel slicing Low No Medium High Medium

DISP-LLM Embedding redistribution Low No Medium High Med–High

ASVD/ Matrix low-rank Low (activ.) Opt./light High Medium Med–High

Proceedings	of	CONF-SEML	2026	Symposium:	Multimodal	Data	Acquisition:	Applications	in	Physiological	and	Behavioral	Research
DOI:	10.54254/2755-2721/2026.AD31512

20

Table 1. (continued)
SVD-LLM

ResSVD Low-rank + residuals Low No High Medium High

MoDeGPT Module-level decomposi- Very low No High Medium Med–High

tion

FLAT-LLM Activation-space per head Very low No High Medium High

In contrast, decomposition-based techniques leverage continuous approximations to maintain
smoother optimization landscapes and often require no retraining. Activation-aware low-rank
methods such as ASVD, SVD-LLM, and ResSVD reduce truncation errors by aligning
decomposition with activation statistics or by compensating residual components. Modular
approaches such as MoDeGPT decompose transformers by functional subsystems, while activation-
space methods like FLAT-LLM identify low-dimensional subspaces directly from attention head
activations. These methods deliver strong accuracy retention at high compression ratios with
minimal calibration cost; however, their behavior under large-scale deployment or domain-shifted
evaluation remains an open question.

As discussed above, pruning based approaches excel in architectural flexibility and align well
with specialized hardware. And decomposition based alternatives typically offer superior weight
fidelity with significantly lower training overhead. Therefore, it is suggested that there is no solution
that could fit for all the problems exists, however, the choice of compression framework must be
dictated by the specific bottlenecks of the target deployment environment.

6. Conclusion

In conclusion, structured pruning and low-rank decomposition represent two major directions in
large language model (LLM) compression, each with distinct strengths. Structured pruning methods
such as LLM-Pruner, SlimGPT, and DISP- LLM preserve architectural regularity and are well-suited
for deployment where hardware efficiency is crucial. Among them, DISP-LLM offers the best
adaptability through dimension-independent pruning. In contrast, decomposition-based methods like
SVD-LLM, MoDeGPT, and FLAT-LLM achieve high compression without retraining, providing
fast, training-free deployment with strong accuracy retention. Indeed, future optimization lies in the
hybrid integration of pruning and decomposition to maximize interpretability. Indeed, this review
article establised s unified benchmarks to ensure cross-method reproducibility. Therefore the key
contributions include the synthesis of hardware-aligned, training-free compression strategies and the
identification of performance-efficiency Pareto frontiers. Such insights catalyze the deployment of
scalable LLMs while maintaining architectural integrity and minimizing computational overhead.

References

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, et al. Gpt-4 technical report. arXiv preprint arXiv: 2303.08774, 2023.

[2] Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak Shakeri,
Emanuel Taropa, Paige Bailey, et al. Palm 2 technical report. arXiv preprint arXiv: 2305.10403, 2023.

[3] Meta GenAI. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv: 2307.09288, 2023.
[4] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini

Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback.
Advances in neural information processing systems, 35: 27730–27744, 2022.

[5] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct
preference optimization: Your language model is secretly a reward model. Advances in neural information

Proceedings	of	CONF-SEML	2026	Symposium:	Multimodal	Data	Acquisition:	Applications	in	Physiological	and	Behavioral	Research
DOI:	10.54254/2755-2721/2026.AD31512

21

processing systems, 36: 53728–53741, 2023.
[6] Wenxiao Wang, Wei Chen, Yicong Luo, Yongliu Long, Zhengkai Lin, Liye Zhang, Binbin Lin, Deng Cai, and

Xiaofei He. Model compression and efficient inference for large language models: A survey. arXiv preprint arXiv:
2402.09748, 2024.

[7] Yehui Tang, Yunhe Wang, Jianyuan Guo, Zhijun Tu, Kai Han, Hailin Hu, and Dacheng Tao. A survey on
transformer compression. arXiv preprint arXiv: 2402.05964, 2024.

[8] Seungcheol Park, Jaehyeon Choi, Sojin Lee, and U Kang. A comprehensive survey of compression algorithms for
language models. arXiv preprint arXiv: 2401.15347, 2024.

[9] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large language
models. Advances in neural information processing systems, 36: 21702–21720, 2023.

[10] Xin Men, Mingyu Xu, Qingyu Zhang, Qianhao Yuan, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect. In Findings of the
Association for Computational Linguistics: ACL 2025, pages 20192–20204, 2025.

[11] Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James Hensman.
Slicegpt: Compress large language models by deleting rows and columns. arXiv preprint arXiv: 2401.15024, 2024.

[12] Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd: Activation-aware singular
value decomposition for compressing large language models. arXiv preprint arXiv: 2312.05821, 2023.

[13] Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value decomposition for
large language model compression. arXiv preprint arXiv: 2403.07378, 2024.

[14] Chi-Heng Lin, Shangqian Gao, James Seale Smith, Abhishek Patel, Shikhar Tuli, Yilin Shen, Hongxia Jin, and Yen-
Chang Hsu. Modegpt: Modular decomposition for large language model compression. arXiv preprint arXiv:
2408.09632, 2024.

[15] Gui Ling, Ziyang Wang, and Qingwen Liu. Slimgpt: Layer-wise structured pruning for large language
models. Advances in Neural Information Processing Systems, 37: 107112–107137, 2024.

[16] Shangqian Gao, Chi-Heng Lin, Ting Hua, Zheng Tang, Yilin Shen, Hongxia Jin, and Yen-Chang Hsu. Disp-llm:
Dimension-independent structural pruning for large language models. Advances in Neural Information Processing
Systems, 37: 72219–72244, 2024.

[17] Xin Wang, Samiul Alam, Zhongwei Wan, Hui Shen, and Mi Zhang. Svd-llm v2: Optimizing singular value
truncation for large language model compression. arXiv preprint arXiv: 2503.12340, 2025.

[18] Haolei Bai, Siyong Jian, Tuo Liang, Yu Yin, and Huan Wang. Ressvd: Residual compensated svd for large language
model compression. arXiv preprint arXiv: 2505.20112, 2025.

[19] Jiayi Tian, Ryan Solgi, Jinming Lu, Yifan Yang, Hai Li, and Zheng Zhang. Flat-llm: Fine-grained low-rank
activation space transformation for large language model compression. arXiv preprint arXiv: 2505.23966, 2025.

