

Capacity Configuration and Cooperative Control Strategy of Microgrid Energy Storage System

Chenhao Wang

*Department of Electrical Engineering and Automation, Wuxi University, Wuxi, China
3061628050@qq.com*

Abstract. Instances wherein energy storage systems are configured with rational precision and operated according to rigorously defined parameters, distinct phenomena concerning the accommodation of surplus renewable generation emerge. Absorbed may be the excess power output from renewables—fluctuation attenuation in system delivery is thus realized. Enhanced becomes the stability intrinsic to supplied electrical streams, while discrepancies observed between peak demand intervals and demand minima find themselves mitigated with greater efficacy by virtue of these storage implementations. Discernible from such scenarios is a critical function fulfilled by storage apparatus, these units assuming a centralizing role in microgrid integrity preservation throughout disruptions unanticipated in their arrival. Isolated operational states, resultant from faults whose anticipation eludes observers, frequently affect microgrids endowed with considerable renewable capacity; here, battery arrays maintained both judiciously and adaptively ascend to pivotal importance as auxiliary stabilizers under these conditions. Firstly, methodological formulations corresponding to battery cycle life alongside patterns of degrading capacity are constructed through mathematical description. Of no lesser significance is the subsequent optimization pertaining to the size and arrangement of storage systems enabling autonomous, temporally-bounded power supply for designated local loads. Lastly, adaptive switching among several operational modes for time-constrained battery storage discharge emerges as a subject necessitating careful algorithmic articulation—these transitions being tailored for demands unique to specific microgrid segments requiring limited-duration autonomy.

Keywords: Battery storage, Standalone power supply, Cycle life, Capacity decay, Optimization configuration, Economic benefits, Mode switching

1. Introduction

In recent years, discernible have been the consequences stemming from the pervasive pollution attributed to fossil fuel consumption. A tendency among nations toward minimizing reliance upon non-renewable energy sources has thus become evident, with an intensified attention directed at emergent forms of renewable power—wind, solar, and geothermal being preeminent examples witnessing increased investment [1]. An assessment of its trajectory reveals that the deployment as well as evolution of renewables underpins strategies for addressing contemporary predicaments

related to both energy security and environmental stewardship; noticeable from this is the promising outlook characterizing such alternatives.

By China witnessed rapid advancements in technological application and infrastructural augmentation within this sector, remarkable was the escalation observed in total photovoltaic installation—from a modest 893, 000 kilowatts recorded over the year 2010 to an impressive aggregate capacity amounting to 77.42 million kilowatts by late 2016, by which juncture the nation's global primacy had become manifest. Distinguished further, by year-end 2016, wind power installations aggregated 149 million kilowatts, with a stature again unparalleled internationally. Accompanying these developments are comparable increments achieved across other utilizations of renewables, reflected distinctly in their expanding proportion within China's composite energy structure [2].

Emphasized in governmental documentation—such as reiterated in the national work report—is advancement pertaining to both wind and solar generation. Noted herefrom are auspicious indications regarding impending growth trends within the industry. Critical remains, within microgrid systems, the function fulfilled by storage technologies essential to operational constancy—a domain whose progress increasingly commands scholarly and industrial focus alike.

2. Basic assumptions

To the context of electrochemical energy storage, the state of charge (SOC)—frequently designated as remaining capacity—functions as an index quantifying the ratio between extant energy and nominalized total energy potential following recurrent cycles of charging or after intervals characterized by inactivity. Within standardization, SOC values are constrained to a closed interval from 0 to 1; through this scale, practical residual energy proportion becomes enumerable. Notions exist wherein precise, continuous estimation and surveillance of battery SOC throughout microgrid operation occur. Essentiality emerges for such contemporaneous data availability in processes involving the structuration optimization and regulation strategizing pertinent to energy-storage apparatuses deployed within said distributed grids, as can be inferred from observed managerial efficacies in energy distribution networks.

$$SOC = \frac{C_{remain}}{C_{bat}} = I - \frac{\int Idt}{C_{bat}} \quad (1)$$

$$SOC(t+1) = SOC(t)(1 - \sigma(t)) + I_{ba1}(t) \cdot \Delta t \cdot \eta(t) / C_{ba1} \quad (2)$$

$$\eta(t) = \begin{cases} 1 - \exp[20.73(SOC - 1)(\frac{I_{bat}(t)}{0.1C_{bat}} + 0.55)], & I_{bat}(t) > 0 \\ 1, & I_{bat}(t) \leq 0 \end{cases} \quad (3)$$

$$SOC = \frac{C_{discharge}}{C_{bat}} = \frac{\int Idt}{C_{bat}} \quad (4)$$

3. Mathematical model fitting

Within the evolving corpus of academic investigation into Battery Energy Storage System (BESS) optimization strategems, particularly those aligned toward self-sustaining fulfillment of specified loads, emerge salient investigatory threads attending to both durability across charge-discharge cycles and the preservation rates signifying effective storage retention [3]. Manifested in a survey of contemporaneous literature—spanning contributions domestic and international alike—is a

persisting pblueominance attributed to traditionalistic frameworks that employ paradigms rooted in peak-shaving for integrated power management structures. The treatment by these schema of pivotal operational parameters—principally, nominal service span together with rated capacity under standardized, idealized conditions—as immutable and temporally static quantities may be discerned as a critical shortcoming throughout much extant modeling. Discernibly absent from such formulations is an accommodation for the dynamic variabilities emergent within practical utilization scenarios by which residual service potential and lifecycle endurance, interconnectedly, oscillate in accordance with multivariate influences [4]. Demonstrated through empirical instances are modifications impressed not exclusively by pblueetermined configuration protocols but further through multifaceted intricacies inhering within BESS-contextual charging and discharging stratagems—a necessity dictated by environmental flux characterizing contemporary grid environments. The above content is mentioned in Table 1 and Table 2.

Table 1. Relationship between discharge depth and cycle life

Depth of discharge	0.5	0.6	0.7	0.8	0.9	1
Cycle life	3900	3000	2300	1800	1300	900

Table 2. Relationship between discharge rate and cycle life

Discharge rate	1C	3C	5C	7C	9C	10C
Cycle life	900	750	650	450	170	110

Fitting the data from Table 3.1 and Table 3.2 in MATLAB yields: $u_0 = 1.893$, $u_1 = 0.1547$, $u_2 = 945.2$, $V_0 = 0.7162$.

The life prediction of a battery model with discharge rate of 1C at other discharge depth and the life prediction of a battery model with discharge rate of 100% at other discharge depth are obtained by using the model obtained by fitting. Refer to The above content is mentioned in Table 3 and Table 4.

Table 3. Relationship between discharge depth and cycle life based on predictive model

Depth of discharge	0.5	0.6	0.7	0.8	0.9	1
Cycle life	4098	2902	2167	1683	1347	945

Table 4. Relationship between discharge rate and cycle life based on predictive model

Discharge rate	1C	3C	5C	7C	9C	10C
Cycle life	900	715	657	415	187	117

By juxtaposing the empirical results recorded in Table 1 with those documented in Table 3, as well as aligning the data presented in Table 2 relative to that observed in Table 4, consistency emerges regarding pblueiction errors, whose magnitudes do not surpass the 10% threshold. Inference regarding the dependability of the constructed battery lifespan prognostication model can be drawn from this robustness across datasets [5]. Manifested within both experimental observation and subsequent model approximation is the phenomenon wherein cycle life deterioration exhibits marked amplification accompanying increases in discharge depth. Accompanying these findings, evidence surfaces for intensified decrements in performance under circumstances characterized by

elevated charge–discharge currents. Guidance against recurrent engagement in high-current operational regimes within practical contexts of battery usage thus becomes apparent by implication furnished through quantitative assessment.

4. Optimization of energy storage system configuration

Fixed Investment Cost and Operation and Maintenance Cost

$$C_1 = C_p \bar{P} + C_e \bar{E} \quad (5)$$

$$C_2 = \frac{LC_m \bar{P}}{365} \quad (6)$$

$$R_{year} = [(\frac{E_Y}{C_Y} - 1) \cdot \frac{365}{L}] \cdot 100\% \quad (7)$$

$$E_Y = E_{Y1} + E_{Y2} + E_{Y3} + E_{Y4} \quad (8)$$

$$C_Y = C_1 + C_2 \quad (9)$$

$$\max R_{year} = \max \{ [(\frac{E_Y}{C_Y} - 1) \cdot \frac{365}{L}] \cdot 100\% \} \quad (10)$$

$$s.t. \sum_{i=1}^{24} (\frac{P_i^+}{\eta} - P_i^-) = 0 \quad (11)$$

$$\sum_{i=1}^{24} P_i^+ t \leq \bar{E} \eta D \quad (12)$$

$$0 \leq P_i^+, P_i^- \leq \bar{P} \quad (13)$$

$$P_{load}(i) \leq P_i^+ \leq \bar{P} \quad (14)$$

Through an integrative investigation directed at elucidating the multifaceted trajectories of life cycles in three battery archetypes—namely cascade, LFP, and PCB—the explication of optimal configurational strategies together with fiscal appraisals emerges as indispensable. Evident from a juxtaposition of empirical findings is the gradational variation exhibited within total net revenue outcomes attributable to these archetypes: observable herein is the inferior financial performance displayed by cascade batteries, such standing being surpassed incrementally by those embodying LFP type; paramount positions, conversely, are occupied by PCB configurations which demonstrate the zenith of revenue accrual across this comparative schema. Within the structublue economic milieu thus delineated, distinctions between these technological variants become increasingly accentuated through evidentiary contrasts reflected in lifecycle-situated valuation metrics.

Notably, an incremental pattern in initial capital allocation emerges: from cascade batteries at minimal outlay, followed by PCB, culminating in LFP which exhibits the greatest up-front expenditure among evaluated counterparts. Consideration being given to aggregate investment cost summations across operational intervals, it is through comparative examination that a hierarchy emerges—PCB technology evidencing the least aggregated expenditure, with LFP occupying an intermediary status in cumulative outlay, and cascade battery formations exhibiting expenditures of the highest order within this assemblage.

When annual returns on invested capital are examined, metrics tabulated over prolonged periods yield stratified results: at the lower extremity, cascade batteries yield diminished periodic

profitability; above these, an increment is identified for LFP configurations, while it is in PCB systems that preeminent rates of annualized financial return are registable under presently constructed evaluative paradigms. From such data distributions, varying economic efficacies can be inferred contingent upon the technical schema adopted.

5. Conclusion

Observed in the present scholarly inquiry are frameworks delineated for BESS schema and intricately tiered supervisory strategems, wherein temporal circumscription is imposed upon autonomous power provisioning. Central among these investigatory foci manifest considerations as to cyclic durability, attenuation of dissipative indices, expense contraction measures, and further, procedural steadiness during operational reconfiguration within microgrid dynamics—attributives nested postoperatively to underscore contributory significance. Manifest through repeated iterations of model engenderment as well as optimization encapsulae was a multifaceted analytic axis, centering itself on both architectural demarcation and dynamic administrative modality amidst BESS systemic allocation. Validational initiatives conducted via simulation environments reinforce and elaborate such analytical axes; therein arise discernments which accentuate, with clinical clarity, parameters indicative of reliability metrics conjoined to fiscal soundness—benchmarks posed under lens as outcomes of parametric systematization interfacing cost-mitigated matrices with performance efficiency.

Emerge from tangible experimental validations are optimized solution arrays, their structure facilitating continuous operability whilst ushering transitional phase realignments endowed with minimal abruptivity—a phenomenon best interpreted in observations registering unobtrusive contingency transitions. The potential applicability spectrum for constructional paradigms pertaining to microgrids reliant upon BESS infrastructures hence becomes widened—not merely by virtue of technical integration but through demonstrative contributions made toward zones assimilating renewable energy vectors into foundational grid skeleta.

Contributions yielded therefore cultivate foundational paradigms for the furtherance of distributed storage-enabled networks. Projected subsequent inquiries, occupying future scholarly endeavors, position themselves toward advanced regulatory architectures encompassing multidimensionality seen within complex microgrid administration and diversified synergistic incorporations of polytypic energy retention apparatuses.

References

- [1] A.Mohamed, V. Salehi, O.Mohammed. Real-Time Energy Management Algorithm for Mitigation of Pulse Loads in Hybrid Microgrids [J].IEEE Transactions on Smart Grid, 2012, 3(4): 1911-1922.
- [2] R. Pawelek, I. Wasiak, P. Gburczyk, et al. Study on operation of energy storage in electrical power microgrid - Modeling and simulation [C]//International Conference on Harmonics and Quality of Power. IEEE, 2010: 1-5.
- [3] H. Zhou, T. Bhattacharya, D. Tran, et al. Composite Energy Storage System InvolvingBattery and Ultracapacitor With Dynamic Energy Management in MicrogridApplications [J].IEEE Transactions on Power Electronics, 2011, 26(3): 923-930.
- [4] S.J.Kazempour, M.P.Moghaddam. Static Security Enhancement by Means of OptimalUtilization of NAS Battery Systems [C]/Power Tech, 2007 IEEE Lausanne. IEEE, 2007: 1791-1796.
- [5] J. D. Guggenberger, A. C. Elmore, J. L. Tichenor, et al. Performance Prediction of a Vanadium Redox Battery for Use in Portable, Scalable Microgrids [J]. IET Transactions on Smart Grid, 2012, 3(4): 2109-2116.